vllm.benchmarks.datasets
This module defines a framework for sampling benchmark requests from various datasets. Each dataset subclass of BenchmarkDataset must implement sample generation. Supported dataset types include: - ShareGPT - Random (synthetic) - Sonnet - BurstGPT - HuggingFace - VisionArena
zeta_prompt module-attribute
¶
zeta_prompt = "### Instruction:\nYou are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.\n\n### User Edits:\n\n{}\n\n### User Excerpt:\n\n{}\n\n### Response:\n\n"
AIMODataset ¶
Bases: HuggingFaceDataset
Dataset class for processing a AIMO dataset with reasoning questions.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime",
"AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT",
}
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
ASRDataset ¶
Bases: HuggingFaceDataset
Dataset class for processing a ASR dataset for transcription. Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+ | Dataset | Domain | Speaking Style | hf-subset | +----------------+----------------------------------------+--------------------------+-----------------------------+ | TED-LIUM | TED talks | Oratory | release1, release2, release3| | | | | release3-speaker-adaptation | | VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... | | LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" | | GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test | | SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test | | AMI | Meetings | Spontaneous | ihm, sdm | +----------------+----------------------------------------+--------------------------+-----------------------------+
Source code in vllm/benchmarks/datasets.py
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 |
|
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr",
"facebook/voxpopuli",
"LIUM/tedlium",
"edinburghcstr/ami",
"speechcolab/gigaspeech",
"kensho/spgispeech",
}
TRANSCRIPTION_PREAMBLE class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
BenchmarkDataset ¶
Bases: ABC
Source code in vllm/benchmarks/datasets.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
random_seed instance-attribute
¶
__init__ ¶
__init__(
dataset_path: Optional[str] = None,
random_seed: int = DEFAULT_SEED,
) -> None
Initialize the BenchmarkDataset with an optional dataset path and random seed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_path | Optional[str] | Path to the dataset. If None, it | None |
random_seed | int | Seed value for reproducible shuffling or | DEFAULT_SEED |
Source code in vllm/benchmarks/datasets.py
apply_multimodal_chat_transformation ¶
apply_multimodal_chat_transformation(
prompt: str,
mm_content: Optional[
Union[MultiModalDataDict, dict, list[dict]]
] = None,
) -> list[dict]
Transform a prompt and optional multimodal content into a chat format. This method is used for chat models that expect a specific conversation format.
Source code in vllm/benchmarks/datasets.py
get_random_lora_request ¶
get_random_lora_request(
tokenizer: PreTrainedTokenizerBase,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
) -> tuple[Optional[LoRARequest], AnyTokenizer]
Optionally select a random LoRA request and return its associated tokenizer.
This method is used when LoRA parameters are provided. It randomly selects a LoRA based on max_loras and retrieves a cached tokenizer for that LoRA if available. Otherwise, it returns the base tokenizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer | PreTrainedTokenizerBase | The base tokenizer to use if no LoRA is selected. | required |
max_loras | Optional[int] | The maximum number of LoRAs available. If | None |
lora_path | Optional[str] | Path to the LoRA parameters on disk. If | None |
Returns:
Type | Description |
---|---|
tuple[Optional[LoRARequest], AnyTokenizer] | A tuple with the following elements: - A new [LoRARequest][] (or |
Source code in vllm/benchmarks/datasets.py
load_data ¶
Load data from the dataset path into self.data.
This method must be overridden by subclasses since the method to load data will vary depending on the dataset format and source.
Raises:
Type | Description |
---|---|
NotImplementedError | If a subclass does not implement this method. |
Source code in vllm/benchmarks/datasets.py
maybe_oversample_requests ¶
maybe_oversample_requests(
requests: list[SampleRequest],
num_requests: int,
request_id_prefix: str = "",
) -> None
Oversamples the list of requests if its size is less than the desired number.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
requests | List[SampleRequest] | The current list of sampled requests. | required |
num_requests | int | The target number of requests. | required |
Source code in vllm/benchmarks/datasets.py
sample abstractmethod
¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
) -> list[SampleRequest]
Abstract method to generate sample requests from the dataset.
Subclasses must override this method to implement dataset-specific logic for generating a list of SampleRequest objects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer | PreTrainedTokenizerBase | The tokenizer to be used for processing the dataset's text. | required |
num_requests | int | The number of sample requests to generate. | required |
Returns:
Type | Description |
---|---|
list[SampleRequest] | list[SampleRequest]: A list of sample requests generated from the |
list[SampleRequest] | dataset. |
Source code in vllm/benchmarks/datasets.py
BurstGPTDataset ¶
Bases: BenchmarkDataset
Implements the BurstGPT dataset. Loads data from a CSV file and generates sample requests based on synthetic prompt generation. Only rows with Model "GPT-4" and positive response tokens are used.
Source code in vllm/benchmarks/datasets.py
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 |
|
__init__ ¶
_sample_loaded_data ¶
Source code in vllm/benchmarks/datasets.py
load_data ¶
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
ConversationDataset ¶
Bases: HuggingFaceDataset
Dataset for conversation data with multimodal support.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
CustomDataset ¶
Bases: BenchmarkDataset
Implements the Custom dataset. Loads data from a JSONL file and generates sample requests based on conversation turns. E.g.,
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
Source code in vllm/benchmarks/datasets.py
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 |
|
__init__ ¶
load_data ¶
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
skip_chat_template: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
HuggingFaceDataset ¶
Bases: BenchmarkDataset
Base class for datasets hosted on HuggingFace.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
__init__ ¶
__init__(
dataset_path: str,
dataset_split: str,
no_stream: bool = False,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None
Source code in vllm/benchmarks/datasets.py
load_data ¶
Load data from HuggingFace datasets.
Source code in vllm/benchmarks/datasets.py
InstructCoderDataset ¶
Bases: HuggingFaceDataset
InstructCoder Dataset. https://huggingface.co/datasets/likaixin/InstructCoder
InstructCoder is the dataset designed for general code editing. It consists of 114,239 instruction-input-output triplets, and covers multiple distinct code editing scenario.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
MLPerfDataset ¶
Bases: HuggingFaceDataset
MLPerf Inference Dataset.
Dataset on HF: https://huggingface.co/datasets/mgoin/mlperf-inference-llama2-data https://huggingface.co/datasets/mgoin/mlperf-inference-llama3.1-data
Each record contains
- "system_prompt": system role instruction.
- "question": user question.
- "output": reference answer.
We combine the system prompt and question into a chat-formatted prompt (using the tokenizer's chat template) and set the expected output length to the tokenized length of the provided reference answer.
Source code in vllm/benchmarks/datasets.py
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 |
|
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"mgoin/mlperf-inference-llama2-data",
"mgoin/mlperf-inference-llama3.1-data",
}
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
MTBenchDataset ¶
Bases: HuggingFaceDataset
MT-Bench Dataset. https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench. This is similar to Spec decoding benchmark setup in vLLM https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
NextEditPredictionDataset ¶
Bases: HuggingFaceDataset
Dataset class for processing a Next Edit Prediction dataset.
Source code in vllm/benchmarks/datasets.py
MAPPING_PROMPT_FUNCS class-attribute
instance-attribute
¶
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt
}
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
**kwargs,
)
Source code in vllm/benchmarks/datasets.py
PrefixRepetitionRandomDataset ¶
Bases: BenchmarkDataset
Source code in vllm/benchmarks/datasets.py
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 |
|
__init__ ¶
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
suffix_len: int = DEFAULT_SUFFIX_LEN,
num_prefixes: int = DEFAULT_NUM_PREFIXES,
output_len: int = DEFAULT_OUTPUT_LEN,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
RandomDataset ¶
Bases: BenchmarkDataset
Synthetic text-only dataset for serving/throughput benchmarks.
Strategy: - Sample input/output token lengths per request from integer-uniform ranges around configured means (controlled by range_ratio). - Prepend a fixed random prefix of length prefix_len. - Generate the remaining tokens as a reproducible sequence: (offset + index + arange(input_len)) % vocab_size. - Decode then re-encode/truncate to ensure prompt token counts match. - Uses numpy.default_rng seeded with random_seed for reproducible sampling.
Source code in vllm/benchmarks/datasets.py
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
__init__ ¶
Source code in vllm/benchmarks/datasets.py
generate_token_sequence ¶
generate_token_sequence(
*,
tokenizer: PreTrainedTokenizerBase,
prefix_token_ids: list[int],
prefix_len: int,
vocab_size: int,
input_len: int,
offset: int,
index: int,
) -> tuple[str, int]
Returns (prompt, total_input_len).
NOTE: After decoding the prompt we have to encode and decode it again. This is done because in some cases N consecutive tokens give a string tokenized into != N number of tokens. For example for GPT2Tokenizer: [6880, 6881] -> ['Ġcalls', 'here'] -> [1650, 939, 486] -> ['Ġcall', 'sh', 'ere'] To avoid uncontrolled change of the prompt length, the encoded sequence is truncated before being decode again.
Source code in vllm/benchmarks/datasets.py
get_prefix ¶
Get the prefix for the dataset.
Source code in vllm/benchmarks/datasets.py
get_sampling_params ¶
get_sampling_params(
num_requests: int,
range_ratio: float,
input_len: int,
output_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> tuple[ndarray, ndarray, ndarray]
Get the sampling parameters for the dataset.
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
batchsize: int = 1,
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
RandomMultiModalDataset ¶
Bases: RandomDataset
Synthetic multimodal dataset (text + images) that extends RandomDataset.
Status: - Images: supported via synthetic RGB data. - Video: not yet supported (TODO: implement video generation method). - Audio: not yet supported.
Sampling overview: 1) Number of items per request is sampled uniformly from the integer range [floor(n·(1−r)), ceil(n·(1+r))], where n is the base count and r is num_mm_items_range_ratio
in [0, 1]. r=0 keeps it fixed; r=1 allows 0. The maximum is further clamped to the sum of per-modality limits. 2) Each item’s modality and shape is sampled from bucket_config
, a dict mapping (height, width, num_frames) → probability. We treat num_frames
=1 as image and and num_frames
> 1 as video. Entries with zero probability are removed and the rest are renormalized to sum to 1. 3) Per-modality hard caps are enforced via limit_mm_per_prompt
. When a modality reaches its cap, all of its buckets are excluded and the remaining probabilities are renormalized.
Example bucket configuration: {(256, 256, 1): 0.5, (720, 1280, 1): 0.4, (720, 1280, 16): 0.1} - Two image buckets (num_frames
=1) and one video bucket (num_frames
=16). OBS.: Only image sampling is supported for now.
Source code in vllm/benchmarks/datasets.py
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
|
DEFAULT_BASE_ITEMS_PER_REQUEST class-attribute
instance-attribute
¶
DEFAULT_ENABLE_MULTIMODAL_CHAT class-attribute
instance-attribute
¶
DEFAULT_LIMIT_MM_PER_PROMPT class-attribute
instance-attribute
¶
DEFAULT_MM_ITEM_BUCKET_CONFIG class-attribute
instance-attribute
¶
DEFAULT_NUM_MM_ITEMS_RANGE_RATIO class-attribute
instance-attribute
¶
__init__ ¶
generate_mm_item ¶
Create synthetic images and videos and apply process_image/process_video respectively. This follows the OpenAI API chat completions https://github.com/openai/openai-python
Source code in vllm/benchmarks/datasets.py
generate_synthetic_image ¶
Generate synthetic PIL image with random RGB values.
NOTE: iid pixel sampling results in worst-case compression (good for stressing I/O), but very unlike real photos. We could consider a “low-freq” mode (e.g., noise blur) to emulate network realism instead of max stress.
Source code in vllm/benchmarks/datasets.py
generate_synthetic_video ¶
Generate synthetic video with random values.
TODO: Finish this method.
get_mm_item_iterator ¶
get_mm_item_iterator(
min_num_mm_items: int,
max_num_mm_items: int,
bucket_config: dict[tuple[int, int, int], float],
limit_mm_per_prompt: dict[str, int],
) -> Iterator[tuple[int, int, int]]
Iterator over the multimodal items for each request whose size is between min_num_mm_items and max_num_mm_items.
Loop over the bucket config and sample a multimodal item. Loop until the number of multimodal items sampled is equal to request_num_mm_items or limit of multimodal items per prompt for all modalities is reached.
Note: - This function operates on a per-request shallow copy of bucket_config
(tuple->float). The original dict passed to sample
is not mutated. If this ever changes, a test is implemented and will fail.
Source code in vllm/benchmarks/datasets.py
get_mm_item_sampling_params ¶
get_mm_item_sampling_params(
base_items_per_request: int,
num_mm_items_range_ratio: float,
limit_mm_per_prompt: dict[str, int],
bucket_config: dict[tuple[int, int, int], float],
) -> tuple[
int,
int,
dict[str, int],
dict[tuple[int, int, int], float],
]
Get the sampling parameters for the multimodal items.
Source code in vllm/benchmarks/datasets.py
map_config_to_modality ¶
Map the configuration to the modality.
Source code in vllm/benchmarks/datasets.py
normalize_bucket_config ¶
normalize_bucket_config(
bucket_config: dict[tuple[int, int, int], float],
) -> dict[tuple[int, int, int], float]
Remove zero probability entries and normalize the bucket config to sum to 1.
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
limit_mm_per_prompt: dict[
str, int
] = DEFAULT_LIMIT_MM_PER_PROMPT,
base_items_per_request: int = DEFAULT_BASE_ITEMS_PER_REQUEST,
num_mm_items_range_ratio: float = DEFAULT_NUM_MM_ITEMS_RANGE_RATIO,
bucket_config: dict[
tuple[int, int, int], float
] = DEFAULT_MM_ITEM_BUCKET_CONFIG,
enable_multimodal_chat: bool = DEFAULT_ENABLE_MULTIMODAL_CHAT,
**kwargs,
) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 |
|
SampleRequest dataclass
¶
Represents a single inference request for benchmarking.
Source code in vllm/benchmarks/datasets.py
multi_modal_data class-attribute
instance-attribute
¶
ShareGPTDataset ¶
Bases: BenchmarkDataset
Implements the ShareGPT dataset. Loads data from a JSON file and generates sample requests based on conversation turns.
Source code in vllm/benchmarks/datasets.py
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 |
|
__init__ ¶
load_data ¶
Source code in vllm/benchmarks/datasets.py
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
SonnetDataset ¶
Bases: BenchmarkDataset
Simplified implementation of the Sonnet dataset. Loads poem lines from a text file and generates sample requests. Default values here copied from benchmark_serving.py
for the sonnet dataset.
Source code in vllm/benchmarks/datasets.py
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 |
|
__init__ ¶
load_data ¶
sample ¶
sample(
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
VisionArenaDataset ¶
Bases: HuggingFaceDataset
Vision Arena Dataset.
Source code in vllm/benchmarks/datasets.py
SUPPORTED_DATASET_PATHS class-attribute
instance-attribute
¶
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat": lambda x: x[
"conversation"
][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1": lambda x: x[
"turns"
][0][0]["content"],
}
sample ¶
sample(
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list
Source code in vllm/benchmarks/datasets.py
_format_zeta_prompt ¶
_format_zeta_prompt(
sample: dict,
original_start_marker: str = "<|editable_region_start|>",
) -> dict
Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset into prompts and expected outputs. It could be further extended to support more NEP datasets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample | dict | The dataset sample containing events, inputs, and outputs. | required |
original_start_marker | str | The marker indicating the start of the editable region. Defaults to "<|editable_region_start|>". | '<|editable_region_start|>' |
Returns:
Type | Description |
---|---|
dict | A dictionary with the formatted prompts and expected outputs. |
Source code in vllm/benchmarks/datasets.py
add_dataset_parser ¶
add_dataset_parser(parser: ArgumentParser)
Source code in vllm/benchmarks/datasets.py
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 |
|
get_samples ¶
get_samples(args, tokenizer) -> list[SampleRequest]
Source code in vllm/benchmarks/datasets.py
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 |
|
is_valid_sequence ¶
is_valid_sequence(
prompt_len: int,
output_len: int,
min_len: int = 4,
max_prompt_len: int = 1024,
max_total_len: int = 2048,
skip_min_output_len_check: bool = False,
) -> bool
Validate a sequence based on prompt and output lengths.
Default pruning criteria are copied from the original sample_hf_requests
and sample_sharegpt_requests
functions in benchmark_serving.py, as well as from sample_requests
in benchmark_throughput.py.
Source code in vllm/benchmarks/datasets.py
lora_path_on_disk cached
¶
process_image ¶
Process a single image input and return a multimedia content dictionary.
Supports the following input types:
-
Dictionary with raw image bytes: - Expects a dict with a 'bytes' key containing raw image data. - Loads the bytes as a PIL.Image.Image.
-
PIL.Image.Image input: - Converts the image to RGB. - Saves the image as a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns a dictionary with the image as a base64 data URL.
-
String input: - Treats the string as a URL or local file path. - Prepends "file://" if the string doesn't start with "http://" or "file://". - Returns a dictionary with the image URL.
Raises:
Type | Description |
---|---|
ValueError | If the input is not a supported type. |
Source code in vllm/benchmarks/datasets.py
process_video ¶
Process a single video input and return a multimedia content dictionary.
Supports the following input types:
-
Dictionary with raw video bytes: - Expects a dict with a 'bytes' key containing raw video data.
-
String input: - Treats the string as a URL or local file path. - Prepends "file://" if the string doesn't start with "http://" or "file://". - Returns a dictionary with the image URL.
Raises:
Type | Description |
---|---|
ValueError | If the input is not a supported type. |