vllm.compilation.decorators
_support_torch_compile ¶
_support_torch_compile(
cls: _T,
dynamic_arg_dims: dict[str, Union[int, list[int]]],
enable_if: Optional[
Callable[[VllmConfig], bool]
] = None,
) -> _T
A decorator to add support for compiling the forward method of a class.
Source code in vllm/compilation/decorators.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
ignore_torch_compile ¶
A decorator to ignore support_torch_compile decorator on the class. This is useful when a parent class has a support_torch_compile decorator, but we don't want to compile the class cls
that inherits the parent class. This only ignores compiling the forward of the class the decorator is applied to.
If the parent has ignore_torch_compile but the child has support_torch_compile, the child will still be compiled.
If the class has one or more submodules that have support_torch_compile decorator applied, compile will not be ignored for those submodules.
Source code in vllm/compilation/decorators.py
support_torch_compile ¶
support_torch_compile(
*,
enable_if: Optional[
Callable[[VllmConfig], bool]
] = None,
) -> Callable[[_T], _T]
support_torch_compile(
cls: Optional[_T] = None,
*,
dynamic_arg_dims: Optional[
dict[str, Union[int, list[int]]]
] = None,
enable_if: Optional[
Callable[[VllmConfig], bool]
] = None,
) -> Union[Callable[[_T], _T], _T]
A decorator to add support for compiling the forward method of a class.
Usage 1: use directly as a decorator without arguments:
@support_torch_compile
class MyModel(nn.Module):
def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
...
Usage 2: use as a decorator with arguments:
@support_torch_compile(dynamic_arg_dims={"x": 0, "y": 0})
class MyModel(nn.Module):
def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
...
dynamic_arg_dims
is a dictionary that maps argument names to the dynamic dimensions of the argument. The dynamic dimensions can be either a single integer or a list of integers.
if dynamic_arg_dims
is None
, it is inferred from the type annotation of the forward
method, based on the following default rules:
- if the argument is annotated as
torch.Tensor
orOptional[torch.Tensor]
, the first dimension will be marked as dynamic. - if the argument is annotated as
IntermediateTensors
, the first dimension of all the tensors in the intermediate tensors will be marked as dynamic.
During runtime, when we actually mark dimensions of tensors, it depends on the value of arguments:
- if it is a single integer (can be negative), the corresponding dimension of the argument will be marked as dynamic.
- if it is
None
, ignored. - if it is
IntermediateTensors
, all the tensors in the intermediate tensors will be marked as dynamic. - otherwise, it will raise an error.
NOTE: if an argument is None
, it should always be passed as None
during the lifetime of the model, otherwise, it cannot be captured as a single computation graph.
enable_if
is a function that takes a VllmConfig
object as input and returns a boolean value indicating whether to compile the model or not. This is useful if you want to compile the model only when certain conditions are met.
Source code in vllm/compilation/decorators.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|