vllm.compilation.fusion_attn
AttentionFp8StaticQuantPattern ¶
Bases: AttentionQuantPattern
Fusion for Attention+Fp8StaticQuant.
Only triggers when the attention implementation returns True in fused_output_quant_supported()
. If the pattern is found, the Fp8StaticQuant op will be removed from the graph, and its scale will be passed into Attention op as the output_scale
argument.
Source code in vllm/compilation/fusion_attn.py
__init__ ¶
_register ¶
Source code in vllm/compilation/fusion_attn.py
AttentionNvfp4QuantPattern ¶
Bases: AttentionQuantPattern
Fusion for Attention+Nvfp4Quant.
Only triggers when the attention implementation returns True in fused_output_quant_supported()
. If the pattern is found, the Nvfp4Quant op will be removed from the graph, and its scale will be passed into Attention op as the output_scale
argument.
Source code in vllm/compilation/fusion_attn.py
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
_register ¶
Source code in vllm/compilation/fusion_attn.py
AttentionQuantPattern ¶
Bases: ABC
The base class for Attn+Quant fusions. Should not be used directly.
Source code in vllm/compilation/fusion_attn.py
__init__ ¶
Source code in vllm/compilation/fusion_attn.py
_register abstractmethod
¶
empty_quant ¶
fx_view_to_reshape staticmethod
¶
fx_view_to_reshape(gm: GraphModule)
register_if_supported ¶
AttnFusionPass ¶
Bases: VllmInductorPass
This pass fuses post-attention quantization onto attention if supported.
It uses the pattern matcher and matches each layer manually, as strings cannot be wildcarded. This also lets us check support on attention layers upon registration instead of during pattern matching.
Currently, only static fp8 quant is supported, but patterns could easily be added for other quant schemes and dtypes. The bigger hurdle for wider support are attention kernels, which need to support fusing output quant.
Source code in vllm/compilation/fusion_attn.py
__call__ ¶
__call__(graph: Graph) -> None
Source code in vllm/compilation/fusion_attn.py
__init__ ¶
__init__(config: VllmConfig)