vllm.config.compilation
CUDAGraphMode ¶
Bases: Enum
Constants for the cudagraph mode in CompilationConfig. Meanwhile, the subset enum NONE
, PIECEWISE
and FULL
are also treated as concrete runtime mode for cudagraph runtime dispatching.
Source code in vllm/config/compilation.py
decode_mode ¶
decode_mode() -> CUDAGraphMode
max_cudagraph_mode ¶
max_cudagraph_mode() -> CUDAGraphMode
mixed_mode ¶
mixed_mode() -> CUDAGraphMode
CompilationConfig ¶
Configuration for compilation. It has three parts:
- Top-level Compilation control:
- CudaGraph capture:
- Inductor compilation:
use_inductor
compile_sizes
inductor_compile_config
inductor_passes
- custom inductor passes
Why we have different sizes for cudagraph and inductor: - cudagraph: a cudagraph captured for a specific size can only be used for the same size. We need to capture all the sizes we want to use. - inductor: a graph compiled by inductor for a general shape can be used for different sizes. Inductor can also compile for specific sizes, where it can have more information to optimize the graph with fully static shapes. However, we find the general shape compilation is sufficient for most cases. It might be beneficial to compile for certain small batchsizes, where inductor is good at optimizing.
Source code in vllm/config/compilation.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
|
_attention_ops class-attribute
¶
_attention_ops: list[str] = [
"vllm.unified_attention",
"vllm.unified_attention_with_output",
"vllm.mamba_mixer2",
"vllm.mamba_mixer",
"vllm.short_conv",
]
backend class-attribute
instance-attribute
¶
backend: str = ''
The backend for compilation. It needs to be a string:
- "" (empty string): use the default backend.
- "eager"/"openxla"/...: use the specified backend registered in PyTorch.
- "full.module.name": a qualified name which can be used to import the
backend function. We use string to avoid serialization issues when using compilation in a distributed setting. When the compilation level is 1 or 2, the backend is used for the compilation directly (it sees the whole graph). When the compilation level is 3, the backend is used for the piecewise compilation (it sees a part of the graph).
bs_to_padded_graph_size class-attribute
instance-attribute
¶
optimization: Intuitively, bs_to_padded_graph_size should be dict[int, int]. since we know all keys are in a range [0, max_capture_size], we can optimize it to list[int] for better lookup performance.
cache_dir class-attribute
instance-attribute
¶
cache_dir: str = ''
The directory to store the compiled graph, to accelerate Inductor compilation. By default, it will use model-related information to generate a cache directory.
compilation_time class-attribute
instance-attribute
¶
time taken for compilation
compile_sizes class-attribute
instance-attribute
¶
Sizes to compile for inductor. In addition to integers, it also supports "cudagraph_capture_sizes" to specify the sizes for cudagraph capture.
cudagraph_capture_sizes class-attribute
instance-attribute
¶
Sizes to capture cudagraph. - None (default): capture sizes are inferred from vllm config. - list[int]: capture sizes are specified as given.
cudagraph_copy_inputs class-attribute
instance-attribute
¶
cudagraph_copy_inputs: bool = False
Whether to copy input tensors for cudagraph. If the caller can guarantee that the same input buffers are always used, it can set this to False. Otherwise, it should set this to True, and the compiler will copy the input to an internally managed buffer. Default is False. Note that this flag is only effective when cudagraph_mode is PIECEWISE.
cudagraph_mode class-attribute
instance-attribute
¶
cudagraph_mode: Optional[CUDAGraphMode] = None
The mode of the cudagraph:
- NONE, no cudagraph capture.
- PIECEWISE. (v1 default)
- FULL.
- FULL_DECODE_ONLY.
- FULL_AND_PIECEWISE.
PIECEWISE mode build piecewise cudagraph only, keeping the cudagraph incompatiable ops (i.e. some attention ops) outside the cudagraph for general flexibility. This is the default mode.
FULL mode: Capture full cudagraph for all batches. Can be good for small models or workloads with small prompts; not supported by many backends. Generally for performance FULL_AND_PIECEWISE is better.
FULL_DECODE_ONLY mode: Capture full cudagraph for decode batches only. Mixed prefill-decode batches are run without cudagraphs. Can be good for decode instances in a P/D setup where prefill is not as important so we can save some memory.
FULL_AND_PIECEWISE mode: Capture full cudagraph for decode batches and piecewise cudagraph for prefill and mixed prefill-decode batches. This is like the most performant mode for most models.
Currently, the cudagraph mode is only used for the v1 engine. Note that the cudagraph logic is generally orthogonal to the compilation logic. While piecewise cudagraphs require piecewise compilation (level=PIECEWISE and non-empty splitting_ops), full cudagraphs are supported with and without compilation.
Warning: This flag is new and subject to change in addition more modes may be added.
cudagraph_num_of_warmups class-attribute
instance-attribute
¶
cudagraph_num_of_warmups: int = 0
Number of warmup runs for cudagraph. It means the first several runs will be treated as warmup runs. Only after that, the execution will be recorded, and the recorded cudagraph will be used for subsequent runs.
custom_ops class-attribute
instance-attribute
¶
Fine-grained control over which custom ops to enable/disable. Use 'all' to enable all, 'none' to disable all. Also specify a list of custom op names to enable (prefixed with a '+'), or disable (prefixed with a '-'). Examples:
- 'all,-op1' to enable all except op1
- 'none,+op1,+op2' to enable only op1 and op2
By default, all custom ops are enabled when running without Inductor and disabled when running with Inductor: level>=PIECEWISE and use_inductor=True. Inductor generates (fused) Triton kernels for disabled custom ops.
debug_dump_path class-attribute
instance-attribute
¶
debug_dump_path: str = ''
The path to dump the debug information.
disabled_custom_ops class-attribute
instance-attribute
¶
custom ops that are disabled
enabled_custom_ops class-attribute
instance-attribute
¶
custom ops that are enabled
full_cuda_graph class-attribute
instance-attribute
¶
whether to use a full cuda graph for the entire forward pass rather than splitting certain operations such as attention into subgraphs. Thus this flag cannot be used together with splitting_ops. This may provide performance benefits for smaller models. Warning: This flag is deprecated and will be removed in the next major or minor release, i.e. v0.11.0 or v1.0.0. Please use cudagraph_mode instead.
inductor_compile_config class-attribute
instance-attribute
¶
Additional configurations for inductor. - None: use default configurations.
inductor_passes class-attribute
instance-attribute
¶
Additional passes for inductor. It is a dictionary from pass name to pass function qualified name. We use function name because the config uses JSON format. If we pass the config from Python, functions can also be passed directly via Python object constructor, e.g. CompilationConfig(inductor_passes={"a": func})
.
level class-attribute
instance-attribute
¶
The level of compilation:
- None: If None, we will select the default compilation level. For V1 engine this is 3, for V0 engine this is 0.
- 0: no compilation.
- 1: dynamo as is.
- 2: dynamo once.
- 3: piecewise compilation.
local_cache_dir class-attribute
instance-attribute
¶
local cache dir for each rank
max_capture_size class-attribute
instance-attribute
¶
not configurable, computed after init
pass_config class-attribute
instance-attribute
¶
pass_config: PassConfig = field(default_factory=PassConfig)
Custom inductor passes, see PassConfig for more details
splitting_ops class-attribute
instance-attribute
¶
A list of ops to split the full graph into subgraphs, used in piecewise compilation.
static_forward_context class-attribute
instance-attribute
¶
Per-model forward context Map from layer name to layer objects that need to be accessed outside model code, e.g., Attention, FusedMOE when dp_size>1.
traced_files class-attribute
instance-attribute
¶
files that are traced for compilation
use_cudagraph class-attribute
instance-attribute
¶
use_cudagraph: bool = True
Whether to use cudagraph inside compilation. - False: cudagraph inside compilation is not used. - True: cudagraph inside compilation is used. It requires that all input buffers have fixed addresses, and all splitting ops write their outputs to input buffers. In the vLLM V1 Engine, this flag only applies for CompilationLevel.PIECEWISE (aka -O3). Note that this is orthogonal to the cudagraph capture logic outside of compilation. Warning: This flag is deprecated and will be removed in the next major or minor release, i.e. v0.11.0 or v1.0.0. Please use cudagraph_mode instead.
use_inductor class-attribute
instance-attribute
¶
use_inductor: bool = True
Whether to use inductor compilation:
- False: inductor compilation is not used. graph runs in eager (custom_ops enabled by default).
- True: inductor compilation is used (custom_ops disabled by default). One graph for symbolic shape and one graph per size in compile_sizes are compiled using configurations in inductor_compile_config.
This setting is ignored if level<PIECEWISE.
__post_init__ ¶
Source code in vllm/config/compilation.py
__repr__ ¶
__repr__() -> str
Source code in vllm/config/compilation.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/compilation.py
init_backend ¶
init_backend(
vllm_config: VllmConfig,
) -> Union[str, Callable]
Source code in vllm/config/compilation.py
init_with_cudagraph_sizes ¶
To complete the initialization of config, we need to know the cudagraph sizes.
Source code in vllm/config/compilation.py
set_splitting_ops_for_v1 ¶
Source code in vllm/config/compilation.py
validate_cudagraph_mode_before classmethod
¶
enable parse the cudagraph_mode
enum type from string
Source code in vllm/config/compilation.py
CompilationLevel ¶
Source code in vllm/config/compilation.py
PassConfig ¶
Configuration for custom Inductor passes.
This is separate from general CompilationConfig
so that inductor passes don't all have access to full configuration - that would create a cycle as the PassManager
is set as a property of config.
Source code in vllm/config/compilation.py
enable_async_tp class-attribute
instance-attribute
¶
enable_async_tp: bool = False
Whether to enable async TP.
enable_attn_fusion class-attribute
instance-attribute
¶
enable_attn_fusion: bool = False
Whether to enable the custom attention+quant fusion pass.
enable_fi_allreduce_fusion class-attribute
instance-attribute
¶
enable_fi_allreduce_fusion: bool = False
Whether to enable flashinfer allreduce fusion.
enable_fusion class-attribute
instance-attribute
¶
enable_fusion: bool = field(
default_factory=lambda: not VLLM_USE_V1
)
Whether to enable the custom fusion (RMSNorm/SiluMul+quant) pass.
enable_noop class-attribute
instance-attribute
¶
enable_noop: bool = field(
default_factory=lambda: not VLLM_USE_V1
)
Whether to enable the custom no-op elimination pass.
enable_sequence_parallelism class-attribute
instance-attribute
¶
enable_sequence_parallelism: bool = False
Whether to enable sequence parallelism.
fi_allreduce_fusion_max_token_num class-attribute
instance-attribute
¶
fi_allreduce_fusion_max_token_num: int = 16384
Max number of tokens to used in flashinfer allreduce fusion.
__post_init__ ¶
Source code in vllm/config/compilation.py
uuid ¶
Produces a hash unique to the pass configuration. Any new fields that affect compilation should be added to the hash. Any future fields that don't affect compilation should be excluded.