vllm.config
Modules:
Name | Description |
---|---|
cache | |
compilation | |
parallel | |
scheduler | |
utils | |
ConvertOption module-attribute
¶
ConvertOption = Literal[
"auto", "none", "embed", "classify", "reward"
]
DataclassInstanceT module-attribute
¶
DataclassInstanceT = TypeVar(
"DataclassInstanceT", bound=DataclassInstance
)
GuidedDecodingBackend module-attribute
¶
GuidedDecodingBackend = Literal[
"auto",
"xgrammar",
"guidance",
"outlines",
"lm-format-enforcer",
]
ModelDType module-attribute
¶
ModelDType = Literal[
"auto",
"half",
"float16",
"bfloat16",
"float",
"float32",
]
SpeculativeMethod module-attribute
¶
SpeculativeMethod = Literal[
"ngram",
"eagle",
"eagle3",
"medusa",
"mlp_speculator",
"draft_model",
"deepseek_mtp",
"ernie_mtp",
]
TaskOption module-attribute
¶
TaskOption = Literal[
"auto",
"generate",
"embedding",
"embed",
"classify",
"score",
"reward",
"transcription",
"draft",
]
_FLOAT16_NOT_SUPPORTED_MODELS module-attribute
¶
_FLOAT16_NOT_SUPPORTED_MODELS = {
"gemma2": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3": "Numerical instability. Please use bfloat16 or float32 instead.",
"plamo2": "Numerical instability. Please use bfloat16 or float32 instead.",
"glm4": "Numerical instability. Please use bfloat16 or float32 instead.",
}
_RUNNER_CONVERTS module-attribute
¶
_RUNNER_CONVERTS: dict[RunnerType, list[ConvertType]] = {
"generate": [],
"pooling": ["embed", "classify", "reward"],
"draft": [],
}
_RUNNER_TASKS module-attribute
¶
_RUNNER_TASKS: dict[RunnerType, list[TaskOption]] = {
"generate": ["generate", "transcription"],
"pooling": [
"embedding",
"embed",
"classify",
"score",
"reward",
],
"draft": ["draft"],
}
_ResolvedTask module-attribute
¶
_ResolvedTask = Literal[
"generate",
"transcription",
"encode",
"embed",
"classify",
"reward",
"draft",
]
_STR_DTYPE_TO_TORCH_DTYPE module-attribute
¶
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": float16,
"float16": float16,
"float": float32,
"float32": float32,
"bfloat16": bfloat16,
}
_SUFFIX_TO_DEFAULTS module-attribute
¶
_SUFFIX_TO_DEFAULTS: list[
tuple[str, tuple[RunnerType, ConvertType]]
] = [
("ForCausalLM", ("generate", "none")),
("ForConditionalGeneration", ("generate", "none")),
("ChatModel", ("generate", "none")),
("LMHeadModel", ("generate", "none")),
("ForTextEncoding", ("pooling", "embed")),
("EmbeddingModel", ("pooling", "embed")),
("ForSequenceClassification", ("pooling", "classify")),
("ForAudioClassification", ("pooling", "classify")),
("ForImageClassification", ("pooling", "classify")),
("ForVideoClassification", ("pooling", "classify")),
("ClassificationModel", ("pooling", "classify")),
("ForRewardModeling", ("pooling", "reward")),
("RewardModel", ("pooling", "reward")),
("Model", ("pooling", "embed")),
]
DecodingConfig ¶
Dataclass which contains the decoding strategy of the engine.
Source code in vllm/config/__init__.py
backend class-attribute
instance-attribute
¶
backend: GuidedDecodingBackend = 'auto'
Which engine will be used for guided decoding (JSON schema / regex etc) by default. With "auto", we will make opinionated choices based on request contents and what the backend libraries currently support, so the behavior is subject to change in each release.
disable_additional_properties class-attribute
instance-attribute
¶
disable_additional_properties: bool = False
If True
, the guidance
backend will not use additionalProperties
in the JSON schema. This is only supported for the guidance
backend and is used to better align its behaviour with outlines
and xgrammar
.
disable_any_whitespace class-attribute
instance-attribute
¶
disable_any_whitespace: bool = False
If True
, the model will not generate any whitespace during guided decoding. This is only supported for xgrammar and guidance backends.
disable_fallback class-attribute
instance-attribute
¶
disable_fallback: bool = False
If True
, vLLM will not fallback to a different backend on error.
reasoning_backend class-attribute
instance-attribute
¶
reasoning_backend: str = ''
Select the reasoning parser depending on the model that you're using. This is used to parse the reasoning content into OpenAI API format.
__post_init__ ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
DeviceConfig ¶
Configuration for the device to use for vLLM execution.
Source code in vllm/config/__init__.py
device class-attribute
instance-attribute
¶
Device type for vLLM execution. This parameter is deprecated and will be removed in a future release. It will now be set automatically based on the current platform.
device_type class-attribute
instance-attribute
¶
Device type from the current platform. This is set in __post_init__
.
__post_init__ ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
KVEventsConfig ¶
Configuration for KV event publishing.
Source code in vllm/config/__init__.py
buffer_steps class-attribute
instance-attribute
¶
buffer_steps: int = 10000
The number of steps to cache for replay endpoint. Will only save events from the last N steps for the replay endpoint.
enable_kv_cache_events class-attribute
instance-attribute
¶
enable_kv_cache_events: bool = False
If True, enable KV cache events for tracking block storage and removal. Events can be published externally by zmq using the event publisher config.
endpoint class-attribute
instance-attribute
¶
endpoint: str = 'tcp://*:5557'
The zmq endpoint to use for publishing kv events.
hwm class-attribute
instance-attribute
¶
hwm: int = 100000
The zmq high water mark for the event publisher. After queueing N events, events will start dropping if the consumer is not keeping up.
max_queue_size class-attribute
instance-attribute
¶
max_queue_size: int = 100000
The maximum number of events to queue while waiting for publishing.
publisher class-attribute
instance-attribute
¶
publisher: str = 'null'
The publisher to use for publishing kv events. Can be "null", "zmq".
replay_endpoint class-attribute
instance-attribute
¶
The zmq endpoint to use for replaying kv events.
KVTransferConfig ¶
Configuration for distributed KV cache transfer.
Source code in vllm/config/__init__.py
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 |
|
engine_id class-attribute
instance-attribute
¶
The engine id for KV transfers.
kv_buffer_device class-attribute
instance-attribute
¶
The device used by kv connector to buffer the KV cache. Currently only support 'cuda'.
kv_buffer_size class-attribute
instance-attribute
¶
kv_buffer_size: float = 1000000000.0
The buffer size for TorchDistributedConnector. Measured in number of bytes. Recommended value: 1e9 (about 1GB).
kv_connector class-attribute
instance-attribute
¶
The KV connector for vLLM to transmit KV caches between vLLM instances.
kv_connector_extra_config class-attribute
instance-attribute
¶
any extra config that the connector may need.
kv_connector_module_path class-attribute
instance-attribute
¶
The Python module path to dynamically load the KV connector from. Only supported in V1.
kv_ip class-attribute
instance-attribute
¶
kv_ip: str = '127.0.0.1'
The KV connector ip, used to build distributed connection.
kv_parallel_size class-attribute
instance-attribute
¶
kv_parallel_size: int = 1
The number of parallel instances for KV cache transfer. For PyNcclConnector, this should be 2.
kv_port class-attribute
instance-attribute
¶
kv_port: int = 14579
The KV connector port, used to build distributed connection.
kv_rank class-attribute
instance-attribute
¶
The rank of this vLLM instance in the KV cache transfer. Typical value: 0 for prefill instance, 1 for decode instance. Currently only 1P1D is supported.
kv_role class-attribute
instance-attribute
¶
Whether this vLLM instance produces, consumes KV cache, or both. Choices are 'kv_producer', 'kv_consumer', and 'kv_both'.
__post_init__ ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
LoRAConfig ¶
Configuration for LoRA.
Source code in vllm/config/__init__.py
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 |
|
bias_enabled class-attribute
instance-attribute
¶
bias_enabled: bool = False
Enable bias for LoRA adapters.
default_mm_loras class-attribute
instance-attribute
¶
Dictionary mapping specific modalities to LoRA model paths; this field is only applicable to multimodal models and should be leveraged when a model always expects a LoRA to be active when a given modality is present. Note that currently, if a request provides multiple additional modalities, each of which have their own LoRA, we do NOT apply default_mm_loras because we currently only support one lora adapter per prompt. When run in offline mode, the lora IDs for n modalities will be automatically assigned to 1-n with the names of the modalities in alphabetic order.
fully_sharded_loras class-attribute
instance-attribute
¶
fully_sharded_loras: bool = False
By default, only half of the LoRA computation is sharded with tensor parallelism. Enabling this will use the fully sharded layers. At high sequence length, max rank or tensor parallel size, this is likely faster.
lora_dtype class-attribute
instance-attribute
¶
Data type for LoRA. If auto, will default to base model dtype.
lora_extra_vocab_size class-attribute
instance-attribute
¶
lora_extra_vocab_size: int = 256
Maximum size of extra vocabulary that can be present in a LoRA adapter (added to the base model vocabulary).
lora_vocab_padding_size class-attribute
¶
lora_vocab_padding_size: int = get_lora_vocab_padding_size()
max_cpu_loras class-attribute
instance-attribute
¶
Maximum number of LoRAs to store in CPU memory. Must be >= than max_loras
.
max_loras class-attribute
instance-attribute
¶
max_loras: int = 1
Max number of LoRAs in a single batch.
__post_init__ ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
verify_with_cache_config ¶
verify_with_cache_config(cache_config: CacheConfig)
verify_with_model_config ¶
verify_with_model_config(model_config: ModelConfig)
LoadConfig ¶
Configuration for loading the model weights.
Source code in vllm/config/__init__.py
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 |
|
device class-attribute
instance-attribute
¶
Device to which model weights will be loaded, default to device_config.device
download_dir class-attribute
instance-attribute
¶
Directory to download and load the weights, default to the default cache directory of Hugging Face.
ignore_patterns class-attribute
instance-attribute
¶
The list of patterns to ignore when loading the model. Default to "original/*/" to avoid repeated loading of llama's checkpoints.
load_format class-attribute
instance-attribute
¶
load_format: Union[str, LoadFormats] = 'auto'
The format of the model weights to load:
-
"auto" will try to load the weights in the safetensors format and fall back to the pytorch bin format if safetensors format is not available.
-
"pt" will load the weights in the pytorch bin format.
-
"safetensors" will load the weights in the safetensors format.
-
"npcache" will load the weights in pytorch format and store a numpy cache to speed up the loading.
-
"dummy" will initialize the weights with random values, which is mainly for profiling.
-
"tensorizer" will use CoreWeave's tensorizer library for fast weight loading. See the Tensorize vLLM Model script in the Examples section for more information.
-
"runai_streamer" will load the Safetensors weights using Run:ai Model Streamer.
-
"bitsandbytes" will load the weights using bitsandbytes quantization.
-
"sharded_state" will load weights from pre-sharded checkpoint files, supporting efficient loading of tensor-parallel models.
-
"gguf" will load weights from GGUF format files (details specified in https://github.com/ggml-org/ggml/blob/master/docs/gguf.md).
-
"mistral" will load weights from consolidated safetensors files used by Mistral models.
- Other custom values can be supported via plugins.
model_loader_extra_config class-attribute
instance-attribute
¶
model_loader_extra_config: Union[dict, TensorizerConfig] = (
field(default_factory=dict)
)
Extra config for model loader. This will be passed to the model loader corresponding to the chosen load_format.
pt_load_map_location class-attribute
instance-attribute
¶
pt_load_map_location: the map location for loading pytorch checkpoint, to support loading checkpoints can only be loaded on certain devices like "cuda", this is equivalent to {"": "cuda"}. Another supported format is mapping from different devices like from GPU 1 to GPU 0: {"cuda:1": "cuda:0"}. Note that when passed from command line, the strings in dictionary needs to be double quoted for json parsing. For more details, see original doc for map_location
in https://pytorch.org/docs/stable/generated/torch.load.html
use_tqdm_on_load class-attribute
instance-attribute
¶
use_tqdm_on_load: bool = True
Whether to enable tqdm for showing progress bar when loading model weights.
__post_init__ ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
ModelConfig ¶
Configuration for the model.
Source code in vllm/config/__init__.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 |
|
allowed_local_media_path class-attribute
instance-attribute
¶
allowed_local_media_path: str = ''
Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
code_revision class-attribute
instance-attribute
¶
The specific revision to use for the model code on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
config_format class-attribute
instance-attribute
¶
config_format: Union[str, ConfigFormat] = AUTO.value
The format of the model config to load:
-
"auto" will try to load the config in hf format if available else it will try to load in mistral format.
-
"hf" will load the config in hf format.
-
"mistral" will load the config in mistral format.
convert class-attribute
instance-attribute
¶
convert: ConvertOption = 'auto'
Convert the model using adapters defined in vllm.model_executor.models.adapters. The most common use case is to adapt a text generation model to be used for pooling tasks.
disable_cascade_attn class-attribute
instance-attribute
¶
disable_cascade_attn: bool = False
Disable cascade attention for V1. While cascade attention does not change the mathematical correctness, disabling it could be useful for preventing potential numerical issues. Note that even if this is set to False, cascade attention will be only used when the heuristic tells that it's beneficial.
disable_sliding_window class-attribute
instance-attribute
¶
disable_sliding_window: bool = False
Whether to disable sliding window. If True, we will disable the sliding window functionality of the model, capping to sliding window size. If the model does not support sliding window, this argument is ignored.
dtype class-attribute
instance-attribute
¶
dtype: Union[ModelDType, dtype] = 'auto'
Data type for model weights and activations:
-
"auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
-
"half" for FP16. Recommended for AWQ quantization.
-
"float16" is the same as "half".
-
"bfloat16" for a balance between precision and range.
-
"float" is shorthand for FP32 precision.
-
"float32" for FP32 precision.
enable_mm_processor_cache property
¶
enable_mm_processor_cache: bool
Whether the multi-modal processor cache should be enabled.
enable_prompt_embeds class-attribute
instance-attribute
¶
enable_prompt_embeds: bool = False
If True
, enables passing text embeddings as inputs via the prompt_embeds
key. Note that enabling this will double the time required for graph compilation.
enable_sleep_mode class-attribute
instance-attribute
¶
enable_sleep_mode: bool = False
Enable sleep mode for the engine (only cuda platform is supported).
enforce_eager class-attribute
instance-attribute
¶
enforce_eager: bool = False
Whether to always use eager-mode PyTorch. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid for maximal performance and flexibility.
generation_config class-attribute
instance-attribute
¶
generation_config: str = 'auto'
The folder path to the generation config. Defaults to "auto"
, the generation config will be loaded from model path. If set to "vllm"
, no generation config is loaded, vLLM defaults will be used. If set to a folder path, the generation config will be loaded from the specified folder path. If max_new_tokens
is specified in generation config, then it sets a server-wide limit on the number of output tokens for all requests.
hf_config_path class-attribute
instance-attribute
¶
Name or path of the Hugging Face config to use. If unspecified, model name or path will be used.
hf_overrides class-attribute
instance-attribute
¶
hf_overrides: HfOverrides = field(default_factory=dict)
If a dictionary, contains arguments to be forwarded to the Hugging Face config. If a callable, it is called to update the HuggingFace config.
hf_token class-attribute
instance-attribute
¶
The token to use as HTTP bearer authorization for remote files . If True
, will use the token generated when running huggingface-cli login
(stored in ~/.huggingface
).
interleave_mm_strings class-attribute
instance-attribute
¶
interleave_mm_strings: bool = False
Enable fully interleaved support for multimodal prompts, while using --chat-template-content-format=string. Defaults to False.
limit_mm_per_prompt class-attribute
instance-attribute
¶
Maximum number of data items per modality per prompt. Only applicable for multimodal models.
logits_processor_pattern class-attribute
instance-attribute
¶
Optional regex pattern specifying valid logits processor qualified names that can be passed with the logits_processors
extra completion argument. Defaults to None
, which allows no processors.
logits_processors class-attribute
instance-attribute
¶
One or more logits processors' fully-qualified class names or class definitions
logprobs_mode class-attribute
instance-attribute
¶
logprobs_mode: LogprobsMode = RAW_LOGPROBS
Indicates the content returned in the logprobs and prompt_logprobs. Supported mode: 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits. Raw means the values before applying any logit processors, like bad words. Processed means the values after applying all processors, including temperature and top_k/top_p.
max_logprobs class-attribute
instance-attribute
¶
max_logprobs: int = 20
Maximum number of log probabilities to return when logprobs
is specified in SamplingParams
. The default value comes the default for the OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length * vocab_size) logprobs are allowed to be returned and it may cause OOM.
max_model_len class-attribute
instance-attribute
¶
max_model_len: SkipValidation[int] = None
Model context length (prompt and output). If unspecified, will be automatically derived from the model config.
When passing via --max-model-len
, supports k/m/g/K/M/G in human-readable format. Examples:
-
1k -> 1000
-
1K -> 1024
-
25.6k -> 25,600
max_seq_len_to_capture class-attribute
instance-attribute
¶
max_seq_len_to_capture: int = 8192
Maximum sequence len covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode. Additionally for encoder-decoder models, if the sequence length of the encoder input is larger than this, we fall back to the eager mode.
media_io_kwargs class-attribute
instance-attribute
¶
Additional args passed to process media inputs, keyed by modalities. For example, to set num_frames for video, set --media-io-kwargs '{"video": {"num_frames": 40} }'
mm_encoder_tp_mode class-attribute
instance-attribute
¶
mm_encoder_tp_mode: MMEncoderTPMode = 'weights'
Indicates how to optimize multi-modal encoder inference using tensor parallelism (TP).
"weights"
: Within the same vLLM engine, split the weights of each layer across TP ranks. (default TP behavior)"data"
: Within the same vLLM engine, split the batched input data across TP ranks to process the data in parallel, while hosting the full weights on each TP rank. This batch-level DP is not to be confused with API request-level DP (which is controlled by--data-parallel-size
). This is only supported on a per-model basis and falls back to"weights"
if the encoder does not support DP.
mm_processor_cache_gb class-attribute
instance-attribute
¶
mm_processor_cache_gb: int = 4
The size (in GiB) of the multi-modal processor cache, which is used to avoid re-processing past multi-modal inputs.
This cache is duplicated for each API process and engine core process, resulting in a total memory usage of mm_processor_cache_gb * (api_server_count + data_parallel_size)
.
Set to 0
to disable this cache completely (not recommended).
mm_processor_kwargs class-attribute
instance-attribute
¶
Arguments to be forwarded to the model's processor for multi-modal data, e.g., image processor. Overrides for the multi-modal processor obtained from AutoProcessor.from_pretrained
. The available overrides depend on the model that is being run. For example, for Phi-3-Vision: {"num_crops": 4}
.
model class-attribute
instance-attribute
¶
model: str = 'Qwen/Qwen3-0.6B'
Name or path of the Hugging Face model to use. It is also used as the content for model_name
tag in metrics output when served_model_name
is not specified.
model_impl class-attribute
instance-attribute
¶
Which implementation of the model to use:
-
"auto" will try to use the vLLM implementation, if it exists, and fall back to the Transformers implementation if no vLLM implementation is available.
-
"vllm" will use the vLLM model implementation.
-
"transformers" will use the Transformers model implementation.
override_attention_dtype class-attribute
instance-attribute
¶
Override dtype for attention
override_generation_config class-attribute
instance-attribute
¶
Overrides or sets generation config. e.g. {"temperature": 0.5}
. If used with --generation-config auto
, the override parameters will be merged with the default config from the model. If used with --generation-config vllm
, only the override parameters are used.
override_neuron_config class-attribute
instance-attribute
¶
Initialize non-default neuron config or override default neuron config that are specific to Neuron devices, this argument will be used to configure the neuron config that can not be gathered from the vllm arguments. e.g. {"cast_logits_dtype": "bfloat16"}
.
override_pooler_config class-attribute
instance-attribute
¶
override_pooler_config: Optional[
Union[dict, PoolerConfig]
] = None
Initialize non-default pooling config or override default pooling config for the pooling model. e.g. {"pooling_type": "mean", "normalize": false}
.
pooler_config class-attribute
instance-attribute
¶
pooler_config: Optional[PoolerConfig] = field(init=False)
Pooler config which controls the behaviour of output pooling in pooling models.
quantization class-attribute
instance-attribute
¶
quantization: SkipValidation[
Optional[QuantizationMethods]
] = None
Method used to quantize the weights. If None
, we first check the quantization_config
attribute in the model config file. If that is None
, we assume the model weights are not quantized and use dtype
to determine the data type of the weights.
revision class-attribute
instance-attribute
¶
The specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
rope_scaling class-attribute
instance-attribute
¶
RoPE scaling configuration. For example, {"rope_type":"dynamic","factor":2.0}
.
rope_theta class-attribute
instance-attribute
¶
RoPE theta. Use with rope_scaling
. In some cases, changing the RoPE theta improves the performance of the scaled model.
runner class-attribute
instance-attribute
¶
runner: RunnerOption = 'auto'
The type of model runner to use. Each vLLM instance only supports one model runner, even if the same model can be used for multiple types.
seed class-attribute
instance-attribute
¶
Random seed for reproducibility. Initialized to None in V0, but initialized to 0 in V1.
served_model_name class-attribute
instance-attribute
¶
The model name(s) used in the API. If multiple names are provided, the server will respond to any of the provided names. The model name in the model field of a response will be the first name in this list. If not specified, the model name will be the same as the --model
argument. Noted that this name(s) will also be used in model_name
tag content of prometheus metrics, if multiple names provided, metrics tag will take the first one.
skip_mm_profiling class-attribute
instance-attribute
¶
skip_mm_profiling: bool = False
When enabled, skips multimodal memory profiling and only profiles with language backbone model during engine initialization.
skip_tokenizer_init class-attribute
instance-attribute
¶
skip_tokenizer_init: bool = False
Skip initialization of tokenizer and detokenizer. Expects valid prompt_token_ids
and None
for prompt from the input. The generated output will contain token ids.
spec_target_max_model_len class-attribute
instance-attribute
¶
Specify the maximum length for spec decoding draft models.
task class-attribute
instance-attribute
¶
task: Optional[TaskOption] = None
[DEPRECATED] The task to use the model for. If the model supports more than one model runner, this is used to select which model runner to run.
Note that the model may support other tasks using the same model runner.
tokenizer class-attribute
instance-attribute
¶
tokenizer: SkipValidation[str] = None
Name or path of the Hugging Face tokenizer to use. If unspecified, model name or path will be used.
tokenizer_mode class-attribute
instance-attribute
¶
tokenizer_mode: TokenizerMode = 'auto'
Tokenizer mode:
-
"auto" will use the fast tokenizer if available.
-
"slow" will always use the slow tokenizer.
-
"mistral" will always use the tokenizer from
mistral_common
. -
"custom" will use --tokenizer to select the preregistered tokenizer.
tokenizer_revision class-attribute
instance-attribute
¶
The specific revision to use for the tokenizer on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
trust_remote_code class-attribute
instance-attribute
¶
trust_remote_code: bool = False
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
use_async_output_proc class-attribute
instance-attribute
¶
use_async_output_proc: bool = True
Whether to use async output processor.
__post_init__ ¶
Source code in vllm/config/__init__.py
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
|
_get_convert_type ¶
_get_convert_type(
architectures: list[str],
runner_type: RunnerType,
convert: ConvertOption,
) -> ConvertType
Source code in vllm/config/__init__.py
_get_default_convert_type ¶
_get_default_convert_type(
architectures: list[str], runner_type: RunnerType
) -> ConvertType
Source code in vllm/config/__init__.py
_get_default_pooling_task ¶
Source code in vllm/config/__init__.py
_get_default_runner_type ¶
_get_default_runner_type(
architectures: list[str],
) -> RunnerType
Source code in vllm/config/__init__.py
_get_encoder_config ¶
_get_runner_type ¶
_get_runner_type(
architectures: list[str], runner: RunnerOption
) -> RunnerType
Source code in vllm/config/__init__.py
_get_supported_generation_tasks ¶
_get_supported_generation_tasks(
architectures: list[str], convert_type: ConvertType
) -> list[_ResolvedTask]
Source code in vllm/config/__init__.py
_get_supported_pooling_tasks ¶
_get_supported_pooling_tasks(
architectures: list[str], convert_type: ConvertType
) -> list[_ResolvedTask]
Source code in vllm/config/__init__.py
_get_supported_tasks ¶
_get_supported_tasks(
architectures: list[str],
runner_type: RunnerType,
convert_type: ConvertType,
) -> list[_ResolvedTask]
Source code in vllm/config/__init__.py
_get_transformers_backend_cls ¶
_get_transformers_backend_cls() -> str
Determine which Transformers backend class will be used if model_impl
is set to transformers
or auto
.
Source code in vllm/config/__init__.py
_init_multimodal_config ¶
_init_multimodal_config() -> Optional[MultiModalConfig]
Source code in vllm/config/__init__.py
_init_pooler_config ¶
_init_pooler_config() -> Optional[PoolerConfig]
Source code in vllm/config/__init__.py
_parse_quant_hf_config ¶
Source code in vllm/config/__init__.py
_verify_bnb_config ¶
The current version of bitsandbytes (0.46.1) with 8-bit models does not yet support CUDA graph.
TODO Remove this when bitsandbytes supports.¶
Source code in vllm/config/__init__.py
_verify_cuda_graph ¶
Source code in vllm/config/__init__.py
_verify_quantization ¶
Source code in vllm/config/__init__.py
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 |
|
_verify_tokenizer_mode ¶
Source code in vllm/config/__init__.py
_verify_with_expert_parallelism ¶
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
get_and_verify_max_len ¶
get_and_verify_max_len(max_model_len: int)
Source code in vllm/config/__init__.py
get_diff_sampling_param ¶
This method returns a dictionary containing the non-default sampling parameters with override_generation_config
applied.
The default sampling parameters are:
- vLLM's neutral defaults if
self.generation_config="vllm"
- the model's defaults if
self.generation_config="auto"
- as defined in
generation_config.json
ifself.generation_config="path/to/generation_config/dir"
Returns:
Type | Description |
---|---|
dict[str, Any] | A dictionary containing the non-default sampling parameters. |
Source code in vllm/config/__init__.py
get_head_size ¶
get_head_size() -> int
Source code in vllm/config/__init__.py
get_layers_start_end_indices ¶
get_layers_start_end_indices(
parallel_config: ParallelConfig,
) -> tuple[int, int]
Source code in vllm/config/__init__.py
get_mamba_chunk_size ¶
Returns the mamba chunk size if it exists
Source code in vllm/config/__init__.py
get_multimodal_config ¶
get_multimodal_config() -> MultiModalConfig
Get the multimodal configuration of the model.
Raises:
Type | Description |
---|---|
ValueError | If the model is not multimodal. |
Source code in vllm/config/__init__.py
get_num_attention_heads ¶
get_num_attention_heads(
parallel_config: ParallelConfig,
) -> int
get_num_kv_heads ¶
get_num_kv_heads(parallel_config: ParallelConfig) -> int
Returns the number of KV heads per GPU.
Source code in vllm/config/__init__.py
get_num_layers ¶
get_num_layers(parallel_config: ParallelConfig) -> int
get_num_layers_by_block_type ¶
get_num_layers_by_block_type(
parallel_config: ParallelConfig,
block_type: LayerBlockType = attention,
) -> int
Source code in vllm/config/__init__.py
get_sliding_window ¶
get_total_num_kv_heads ¶
get_total_num_kv_heads() -> int
Returns the total number of KV heads.
Source code in vllm/config/__init__.py
maybe_pull_model_tokenizer_for_s3 ¶
Pull model/tokenizer from S3 to temporary directory when needed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | str | Model name or path | required |
tokenizer | str | Tokenizer name or path | required |
Source code in vllm/config/__init__.py
try_get_generation_config ¶
This method attempts to retrieve the non-default values of the generation config for this model.
The generation config can contain information about special tokens, as well as sampling parameters. Which is why this method exists separately to get_diff_sampling_param
.
Returns:
Type | Description |
---|---|
dict[str, Any] | A dictionary containing the non-default generation config. |
Source code in vllm/config/__init__.py
validate_model_config_after ¶
validate_model_config_after() -> ModelConfig
Source code in vllm/config/__init__.py
validate_quantization_before classmethod
¶
verify_async_output_proc ¶
Source code in vllm/config/__init__.py
verify_dual_chunk_attention_config ¶
verify_dual_chunk_attention_config(
load_config: LoadConfig,
) -> None
Source code in vllm/config/__init__.py
verify_with_parallel_config ¶
verify_with_parallel_config(
parallel_config: ParallelConfig,
) -> None
Source code in vllm/config/__init__.py
ModelImpl ¶
Source code in vllm/config/__init__.py
MultiModalConfig ¶
Controls the behavior of multimodal models.
Source code in vllm/config/__init__.py
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 |
|
interleave_mm_strings class-attribute
instance-attribute
¶
interleave_mm_strings: bool = False
Enable fully interleaved support for multimodal prompts.
limit_per_prompt class-attribute
instance-attribute
¶
limit_per_prompt: dict[str, int] = cast(
dict[str, int],
get_field(ModelConfig, "limit_mm_per_prompt"),
)
The maximum number of input items allowed per prompt for each modality. Defaults to 1 (V0) or 999 (V1) for each modality.
For example, to allow up to 16 images and 2 videos per prompt: {"image": 16, "video": 2}
media_io_kwargs class-attribute
instance-attribute
¶
Additional args passed to process media inputs, keyed by modalities. For example, to set num_frames for video, set --media-io-kwargs '{"video": {"num_frames": 40} }'
mm_encoder_tp_mode class-attribute
instance-attribute
¶
mm_encoder_tp_mode: MMEncoderTPMode = 'weights'
Indicates how to optimize multi-modal encoder inference using tensor parallelism (TP).
"weights"
: Within the same vLLM engine, split the weights of each layer across TP ranks. (default TP behavior)"data"
: Within the same vLLM engine, split the batched input data across TP ranks to process the data in parallel, while hosting the full weights on each TP rank. This batch-level DP is not to be confused with API request-level DP (which is controlled by--data-parallel-size
). This is only supported on a per-model basis and falls back to"weights"
if the encoder does not support DP.
mm_processor_cache_gb class-attribute
instance-attribute
¶
mm_processor_cache_gb: int = 4
The size (in GiB) of the multi-modal processor cache, which is used to
This cache is duplicated for each API process and engine core process, resulting in a total memory usage of mm_processor_cache_gb * (api_server_count + data_parallel_size)
.
Set to 0
to disable this cache completely (not recommended).
mm_processor_kwargs class-attribute
instance-attribute
¶
Overrides for the multi-modal processor obtained from transformers.AutoProcessor.from_pretrained
.
The available overrides depend on the model that is being run.
For example, for Phi-3-Vision: {"num_crops": 4}
.
skip_mm_profiling class-attribute
instance-attribute
¶
skip_mm_profiling: bool = False
When enabled, skips multimodal memory profiling and only profiles with language backbone model during engine initialization.
This reduces engine startup time but shifts the responsibility to users for estimating the peak memory usage of the activation of multimodal encoder and embedding cache.
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
get_limit_per_prompt ¶
Get the maximum number of input items allowed per prompt for the given modality.
Source code in vllm/config/__init__.py
merge_mm_processor_kwargs ¶
Get the keyword arguments to pass to the multi-modal processor according to the extra arguments passed during inference.
Source code in vllm/config/__init__.py
ObservabilityConfig ¶
Configuration for observability - metrics and tracing.
Source code in vllm/config/__init__.py
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 |
|
collect_detailed_traces class-attribute
instance-attribute
¶
collect_detailed_traces: Optional[
list[DetailedTraceModules]
] = None
It makes sense to set this only if --otlp-traces-endpoint
is set. If set, it will collect detailed traces for the specified modules. This involves use of possibly costly and or blocking operations and hence might have a performance impact.
Note that collecting detailed timing information for each request can be expensive.
collect_model_execute_time cached
property
¶
collect_model_execute_time: bool
Whether to collect model execute time for the request.
collect_model_forward_time cached
property
¶
collect_model_forward_time: bool
Whether to collect model forward time for the request.
otlp_traces_endpoint class-attribute
instance-attribute
¶
Target URL to which OpenTelemetry traces will be sent.
show_hidden_metrics cached
property
¶
show_hidden_metrics: bool
Check if the hidden metrics should be shown.
show_hidden_metrics_for_version class-attribute
instance-attribute
¶
Enable deprecated Prometheus metrics that have been hidden since the specified version. For example, if a previously deprecated metric has been hidden since the v0.7.0 release, you use --show-hidden-metrics-for-version=0.7
as a temporary escape hatch while you migrate to new metrics. The metric is likely to be removed completely in an upcoming release.
__post_init__ ¶
Source code in vllm/config/__init__.py
_parse_collect_detailed_traces ¶
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
PoolerConfig ¶
Controls the behavior of output pooling in pooling models.
Source code in vllm/config/__init__.py
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 |
|
activation class-attribute
instance-attribute
¶
Whether to apply activation function to the classification outputs.
dimensions class-attribute
instance-attribute
¶
Reduce the dimensions of embeddings if model support matryoshka representation.
enable_chunked_processing class-attribute
instance-attribute
¶
Whether to enable chunked processing for long inputs that exceed the model's maximum position embeddings. When enabled, long inputs will be split into chunks, processed separately, and then aggregated using weighted averaging. This allows embedding models to handle arbitrarily long text without CUDA errors. Defaults to False.
max_embed_len class-attribute
instance-attribute
¶
Maximum input length allowed for embedding generation. When set, allows inputs longer than max_embed_len to be accepted for embedding models. This parameter enables accepting long inputs without requiring VLLM_ALLOW_LONG_MAX_MODEL_LEN environment variable. When an input exceeds max_embed_len, it will be handled according to the original max_model_len validation logic. Defaults to None (i.e. set to max_model_len).
normalize class-attribute
instance-attribute
¶
Whether to normalize the embeddings outputs.
pooling_type class-attribute
instance-attribute
¶
The pooling method of the pooling model. This should be a key in vllm.model_executor.layers.pooler.PoolingType
.
returned_token_ids class-attribute
instance-attribute
¶
A list of indices for the vocabulary dimensions to be extracted, such as the token IDs of good_token
and bad_token
in the math-shepherd-mistral-7b-prm
model.
softmax class-attribute
instance-attribute
¶
Whether to apply softmax to the reward outputs.
step_tag_id class-attribute
instance-attribute
¶
If set, only the score corresponding to the step_tag_id
in the generated sentence should be returned. Otherwise, the scores for all tokens are returned.
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
SpeculativeConfig ¶
Configuration for speculative decoding.
Source code in vllm/config/__init__.py
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 |
|
code_revision class-attribute
instance-attribute
¶
The specific revision to use for the draft model code on Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
disable_by_batch_size class-attribute
instance-attribute
¶
Disable speculative decoding for new incoming requests when the number of enqueued requests is larger than this value, if provided.
disable_log_stats class-attribute
instance-attribute
¶
disable_log_stats: SkipValidation[bool] = None
Whether to disable the periodic printing of stage times in speculative decoding.
disable_logprobs class-attribute
instance-attribute
¶
disable_logprobs: bool = True
If set to True, token log probabilities are not returned during speculative decoding. If set to False, token log probabilities are returned according to the log probability settings in SamplingParams.
draft_model_config class-attribute
instance-attribute
¶
draft_model_config: SkipValidation[ModelConfig] = None
The configuration of the draft model initialized internal.
draft_parallel_config class-attribute
instance-attribute
¶
draft_parallel_config: SkipValidation[ParallelConfig] = None
The parallel configuration for the draft model initialized internal.
draft_tensor_parallel_size class-attribute
instance-attribute
¶
The degree of the tensor parallelism for the draft model. Can only be 1 or the same as the target model's tensor parallel size.
enable_chunked_prefill class-attribute
instance-attribute
¶
enable_chunked_prefill: SkipValidation[bool] = None
Whether vLLM is configured to use chunked prefill or not. Used for raising an error since it's not yet compatible with speculative decode.
max_model_len class-attribute
instance-attribute
¶
The maximum model length of the draft model. Used when testing the ability to skip speculation for some sequences.
method class-attribute
instance-attribute
¶
method: Optional[SpeculativeMethod] = None
The name of the speculative method to use. If users provide and set the model
param, the speculative method type will be detected automatically if possible, if model
param is not provided, the method name must be provided.
If using ngram
method, the related configuration prompt_lookup_max
and prompt_lookup_min
should be considered.
model class-attribute
instance-attribute
¶
The name of the draft model, eagle head, or additional weights, if provided.
num_lookahead_slots property
¶
num_lookahead_slots: int
The number of additional slots the scheduler should allocate per step, in addition to the slots allocated for each known token.
This is equal to the number of speculative tokens, as each speculative token must be scored.
num_speculative_tokens class-attribute
instance-attribute
¶
num_speculative_tokens: SkipValidation[int] = None
The number of speculative tokens, if provided. It will default to the number in the draft model config if present, otherwise, it is required.
prompt_lookup_max class-attribute
instance-attribute
¶
Maximum size of ngram token window when using Ngram proposer, required when method is set to ngram.
prompt_lookup_min class-attribute
instance-attribute
¶
Minimum size of ngram token window when using Ngram proposer, if provided. Defaults to 1.
quantization class-attribute
instance-attribute
¶
quantization: Optional[QuantizationMethods] = None
Quantization method that was used to quantize the draft model weights. If None
, we assume the model weights are not quantized. Note that it only takes effect when using the draft model-based speculative method.
revision class-attribute
instance-attribute
¶
The specific model version to use for the draft model. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
speculative_token_tree class-attribute
instance-attribute
¶
Specifies the tree structure for speculative token generation.
target_model_config class-attribute
instance-attribute
¶
target_model_config: SkipValidation[ModelConfig] = None
The configuration of the target model.
target_parallel_config class-attribute
instance-attribute
¶
target_parallel_config: SkipValidation[ParallelConfig] = (
None
)
The parallel configuration for the target model.
__post_init__ ¶
Source code in vllm/config/__init__.py
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 |
|
_maybe_override_draft_max_model_len staticmethod
¶
_maybe_override_draft_max_model_len(
speculative_max_model_len: Optional[int],
draft_max_model_len: int,
target_max_model_len: int,
) -> int
Determine the max sequence len for the draft model. This is usually the draft_max_model_len, but may be the target_max_model_len if it is less than the draft_max_model_len, or may be speculative_max_model_len if it is specified.
This is necessary so that sequences do not exceed the capacity of the draft model or the target model.
speculative_max_model_len is mainly used for testing that sequences can skip speculation.
Source code in vllm/config/__init__.py
_verify_and_get_draft_tp staticmethod
¶
_verify_and_get_draft_tp(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: Optional[int],
draft_hf_config: PretrainedConfig,
) -> int
Verifies and adjusts the tensor parallel size for a draft model specified using speculative_draft_tensor_parallel_size.
Source code in vllm/config/__init__.py
_verify_args ¶
_verify_args() -> Self
Source code in vllm/config/__init__.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
create_draft_parallel_config staticmethod
¶
create_draft_parallel_config(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: int,
) -> ParallelConfig
Create a parallel config for use by the draft worker.
This is mostly a copy of the target parallel config, except the tp_size.
Source code in vllm/config/__init__.py
hf_config_override staticmethod
¶
Source code in vllm/config/__init__.py
SpeechToTextConfig ¶
Configuration for speech-to-text models.
Source code in vllm/config/__init__.py
max_audio_clip_s class-attribute
instance-attribute
¶
max_audio_clip_s: int = 30
Maximum duration in seconds for a single audio clip without chunking. Audio longer than this will be split into smaller chunks if allow_audio_chunking
evaluates to True, otherwise it will be rejected.
min_energy_split_window_size class-attribute
instance-attribute
¶
Window size in samples for finding low-energy (quiet) regions to split audio chunks. The algorithm looks for the quietest moment within this window to minimize cutting through speech. Default 1600 samples ≈ 100ms at 16kHz. If None, no chunking will be done.
SupportsHash ¶
SupportsMetricsInfo ¶
VllmConfig ¶
Dataclass which contains all vllm-related configuration. This simplifies passing around the distinct configurations in the codebase.
Source code in vllm/config/__init__.py
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 |
|
additional_config class-attribute
instance-attribute
¶
additional_config: Union[dict, SupportsHash] = field(
default_factory=dict
)
Additional config for specified platform. Different platforms may support different configs. Make sure the configs are valid for the platform you are using. Contents must be hashable.
cache_config class-attribute
instance-attribute
¶
cache_config: CacheConfig = field(
default_factory=CacheConfig
)
Cache configuration.
compilation_config class-attribute
instance-attribute
¶
compilation_config: CompilationConfig = field(
default_factory=CompilationConfig
)
torch.compile
and cudagraph capture configuration for the model.
As a shorthand, -O<n>
can be used to directly specify the compilation level n
: -O3
is equivalent to -O.level=3
(same as -O='{"level":3}'
). Currently, -O
NOTE: level 0 is the default level without any optimization. level 1 and 2 are for internal testing only. level 3 is the recommended level for production, also default in V1.
You can specify the full compilation config like so: {"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}
decoding_config class-attribute
instance-attribute
¶
decoding_config: DecodingConfig = field(
default_factory=DecodingConfig
)
Decoding configuration.
device_config class-attribute
instance-attribute
¶
device_config: DeviceConfig = field(
default_factory=DeviceConfig
)
Device configuration.
kv_events_config class-attribute
instance-attribute
¶
kv_events_config: Optional[KVEventsConfig] = None
The configurations for event publishing.
kv_transfer_config class-attribute
instance-attribute
¶
kv_transfer_config: Optional[KVTransferConfig] = None
The configurations for distributed KV cache transfer.
load_config class-attribute
instance-attribute
¶
load_config: LoadConfig = field(default_factory=LoadConfig)
Load configuration.
lora_config class-attribute
instance-attribute
¶
lora_config: Optional[LoRAConfig] = None
LoRA configuration.
model_config class-attribute
instance-attribute
¶
model_config: ModelConfig = None
Model configuration.
observability_config class-attribute
instance-attribute
¶
observability_config: Optional[ObservabilityConfig] = None
Observability configuration.
parallel_config class-attribute
instance-attribute
¶
parallel_config: ParallelConfig = field(
default_factory=ParallelConfig
)
Parallel configuration.
quant_config class-attribute
instance-attribute
¶
quant_config: Optional[QuantizationConfig] = None
Quantization configuration.
scheduler_config class-attribute
instance-attribute
¶
scheduler_config: SchedulerConfig = field(
default_factory=SchedulerConfig
)
Scheduler configuration.
speculative_config class-attribute
instance-attribute
¶
speculative_config: Optional[SpeculativeConfig] = None
Speculative decoding configuration.
__post_init__ ¶
Verify configs are valid & consistent with each other.
Source code in vllm/config/__init__.py
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 |
|
__str__ ¶
Source code in vllm/config/__init__.py
_get_quantization_config staticmethod
¶
_get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Get the quantization config.
Source code in vllm/config/__init__.py
_set_cudagraph_sizes ¶
cudagraph batchsize padding logic:
[1, 2, 4] + [8 * i for i in range(1, 1025)]
is a list of all possible batch sizes that cudagraph will capture.
Depending on the engine's configuration of max_num_seqs
, the candidate batch sizes to capture cudagraph will shrink to the subset which just cover the range of [1, max_num_seqs]
. In the common case, max_num_seqs
is 256, and the cudagraph batch sizes will be [1, 2, 4, 8, 16, 24, 32, 40, ..., 256]
.
However, if users specify the cudagraph capture sizes through compilation config, we will use the specified sizes instead.
In the end, vllm_config.compilation_config.cudagraph_capture_sizes
will be the final sizes to capture cudagraph (in descending order).
During runtime, if batchsize is larger than vllm_config.compilation_config.cudagraph_capture_sizes
, no cudagraph will be used. If the batch size is no larger than vllm_config.compilation_config.cudagraph_capture_sizes
, we can quickly find the padded graph size for a given batch size by looking up vllm_config.compilation_config.bs_to_padded_graph_size
.
Source code in vllm/config/__init__.py
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 |
|
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/__init__.py
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 |
|
get_quantization_config staticmethod
¶
get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Source code in vllm/config/__init__.py
pad_for_cudagraph ¶
Source code in vllm/config/__init__.py
recalculate_max_model_len ¶
recalculate_max_model_len(max_model_len: int)
Source code in vllm/config/__init__.py
try_verify_and_update_config ¶
Source code in vllm/config/__init__.py
update_sizes_for_sequence_parallelism ¶
Source code in vllm/config/__init__.py
with_hf_config ¶
with_hf_config(
hf_config: PretrainedConfig,
architectures: Optional[list[str]] = None,
) -> VllmConfig
Source code in vllm/config/__init__.py
_check_valid_dtype ¶
Source code in vllm/config/__init__.py
_find_dtype ¶
Source code in vllm/config/__init__.py
_get_and_verify_dtype ¶
_get_and_verify_dtype(
model_id: str,
config: PretrainedConfig,
dtype: Union[str, dtype],
*,
is_pooling_model: bool,
revision: Optional[str] = None,
) -> dtype
Source code in vllm/config/__init__.py
_get_and_verify_max_len ¶
_get_and_verify_max_len(
hf_config: PretrainedConfig,
tokenizer_config: Optional[dict],
max_model_len: Optional[int],
disable_sliding_window: bool,
sliding_window: Optional[int],
spec_target_max_model_len: Optional[int] = None,
encoder_config: Optional[Any] = None,
) -> int
Get and verify the model's maximum length.
Source code in vllm/config/__init__.py
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 |
|
_is_valid_dtype ¶
_resolve_auto_dtype ¶
Source code in vllm/config/__init__.py
assert_hashable ¶
Source code in vllm/config/__init__.py
contains_object_print ¶
Check if the text looks like a printed Python object, e.g. contains any substring matching the pattern: "at 0xFFFFFFF>" We match against 0x followed by 2-16 hex chars (there's a max of 16 on a 64 bit system).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text | str | The text to check | required |
Returns:
Name | Type | Description |
---|---|---|
result | bool |
|
Source code in vllm/config/__init__.py
get_attr_docs ¶
Get any docstrings placed after attribute assignments in a class body.
https://davidism.com/mit-license/
Source code in vllm/config/__init__.py
get_cached_compilation_config cached
¶
Cache config to avoid repeated calls to get_current_vllm_config()
get_current_model_prefix ¶
get_current_model_prefix() -> str
Get the prefix of the model that's currently being initialized.
get_current_vllm_config ¶
get_current_vllm_config() -> VllmConfig
Source code in vllm/config/__init__.py
get_field ¶
get_field(cls: ConfigType, name: str) -> Field
Get the default factory field of a dataclass by name. Used for getting default factory fields in EngineArgs
.
Source code in vllm/config/__init__.py
get_layers_from_vllm_config ¶
get_layers_from_vllm_config(
vllm_config: VllmConfig,
layer_type: type[T],
layer_names: Optional[list[str]] = None,
) -> dict[str, T]
Get layers from the vLLM config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config | VllmConfig | The vLLM config. | required |
layer_type | type[T] | The type of the layer to get. | required |
layer_names | Optional[list[str]] | The names of the layers to get. If None, return all layers. | None |
Source code in vllm/config/__init__.py
get_served_model_name ¶
If the input is a non-empty list, the first model_name in served_model_name
is taken. If the input is a non-empty string, it is used directly. For cases where the input is either an empty string or an empty list, the fallback is to use self.model
.
Source code in vllm/config/__init__.py
is_init_field ¶
is_init_field(cls: ConfigType, name: str) -> bool
iter_architecture_defaults ¶
set_current_vllm_config ¶
set_current_vllm_config(
vllm_config: VllmConfig,
check_compile=False,
prefix: Optional[str] = None,
)
Temporarily set the current vLLM config. Used during model initialization. We save the current vLLM config in a global variable, so that all modules can access it, e.g. custom ops can access the vLLM config to determine how to dispatch.
Source code in vllm/config/__init__.py
try_match_architecture_defaults ¶
try_match_architecture_defaults(
architecture: str,
*,
runner_type: Optional[RunnerType] = None,
convert_type: Optional[ConvertType] = None,
) -> Optional[tuple[str, tuple[RunnerType, ConvertType]]]
Source code in vllm/config/__init__.py
update_config ¶
update_config(
config: DataclassInstanceT, overrides: dict[str, Any]
) -> DataclassInstanceT