Bases: DeviceCommunicatorBase
Source code in vllm/distributed/device_communicators/tpu_communicator.py
| class TpuCommunicator(DeviceCommunicatorBase):
def __init__(self,
cpu_group: ProcessGroup,
device: Optional[torch.device] = None,
device_group: Optional[ProcessGroup] = None,
unique_name: str = ""):
super().__init__(cpu_group, device, device_group, unique_name)
# NOTE(woosuk): When using TP > 1 on TPUs, every TPU on the same node
# must be used together. Therefore, the local rank and world size can
# be simply calculated as follows.
global_rank = self.global_rank
global_world_size = self.global_world_size
if USE_RAY:
logger.info("TpuCommunicator initialized with RAY")
# Calculate how many TPU nodes are in the current deployment. This
# is the Ray placement group if it is deployed with Ray. Default
# to the number of TPU nodes in the Ray cluster. The number of TPU
# nodes is computed by the total number of TPUs divided by the
# number of TPU accelerators per node, to account for clusters
# with both CPUs and TPUs.
num_nodes = ray_utils.get_num_tpu_nodes()
num_nodes_in_pg = ray_utils.get_num_nodes_in_placement_group()
if num_nodes_in_pg > 0:
num_nodes = num_nodes_in_pg
local_world_size = global_world_size // num_nodes
local_rank = global_rank % local_world_size
else:
logger.info("TpuCommunicator initialized with MP")
# Sanity: Verify we run on a single host
num_hosts = torch_xla.tpu.num_tpu_workers()
assert num_hosts == 1
# Get the current number of TPUs (we have locally)
local_world_size = torch_xla.tpu.num_available_chips()
# Get current rank
local_rank = global_rank % local_world_size
# Ensure environment variables are set for multihost deployments.
# On GKE, this is needed for libtpu and TPU driver to know which TPU
# chip is actually visible. Otherwise the TPU driver will fail to
# initialize because the number of devices would be different from
# the number of visible worker addresses.
os.environ["CLOUD_TPU_TASK_ID"] = str(global_rank)
os.environ["TPU_VISIBLE_CHIPS"] = str(local_rank)
pjrt.initialize_multiprocess(local_rank, local_world_size)
xr._init_world_size_ordinal()
self.groups = create_optimized_replica_groups()
def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
# TODO: Remove the groups specification after XLA compiler can support
# auto-reordering the ring order for all-reduce.
return xm.all_reduce(xm.REDUCE_SUM, input_, groups=self.groups)
def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
assert dim == -1, "TPUs only support dim=-1 for all-gather."
return xm.all_gather(input_, dim=dim)
|
groups instance-attribute
groups = create_optimized_replica_groups()
__init__
__init__(
cpu_group: ProcessGroup,
device: Optional[device] = None,
device_group: Optional[ProcessGroup] = None,
unique_name: str = "",
)
Source code in vllm/distributed/device_communicators/tpu_communicator.py
| def __init__(self,
cpu_group: ProcessGroup,
device: Optional[torch.device] = None,
device_group: Optional[ProcessGroup] = None,
unique_name: str = ""):
super().__init__(cpu_group, device, device_group, unique_name)
# NOTE(woosuk): When using TP > 1 on TPUs, every TPU on the same node
# must be used together. Therefore, the local rank and world size can
# be simply calculated as follows.
global_rank = self.global_rank
global_world_size = self.global_world_size
if USE_RAY:
logger.info("TpuCommunicator initialized with RAY")
# Calculate how many TPU nodes are in the current deployment. This
# is the Ray placement group if it is deployed with Ray. Default
# to the number of TPU nodes in the Ray cluster. The number of TPU
# nodes is computed by the total number of TPUs divided by the
# number of TPU accelerators per node, to account for clusters
# with both CPUs and TPUs.
num_nodes = ray_utils.get_num_tpu_nodes()
num_nodes_in_pg = ray_utils.get_num_nodes_in_placement_group()
if num_nodes_in_pg > 0:
num_nodes = num_nodes_in_pg
local_world_size = global_world_size // num_nodes
local_rank = global_rank % local_world_size
else:
logger.info("TpuCommunicator initialized with MP")
# Sanity: Verify we run on a single host
num_hosts = torch_xla.tpu.num_tpu_workers()
assert num_hosts == 1
# Get the current number of TPUs (we have locally)
local_world_size = torch_xla.tpu.num_available_chips()
# Get current rank
local_rank = global_rank % local_world_size
# Ensure environment variables are set for multihost deployments.
# On GKE, this is needed for libtpu and TPU driver to know which TPU
# chip is actually visible. Otherwise the TPU driver will fail to
# initialize because the number of devices would be different from
# the number of visible worker addresses.
os.environ["CLOUD_TPU_TASK_ID"] = str(global_rank)
os.environ["TPU_VISIBLE_CHIPS"] = str(local_rank)
pjrt.initialize_multiprocess(local_rank, local_world_size)
xr._init_world_size_ordinal()
self.groups = create_optimized_replica_groups()
|
all_gather
Source code in vllm/distributed/device_communicators/tpu_communicator.py
| def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
assert dim == -1, "TPUs only support dim=-1 for all-gather."
return xm.all_gather(input_, dim=dim)
|
all_reduce
Source code in vllm/distributed/device_communicators/tpu_communicator.py
| def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
# TODO: Remove the groups specification after XLA compiler can support
# auto-reordering the ring order for all-reduce.
return xm.all_reduce(xm.REDUCE_SUM, input_, groups=self.groups)
|