Skip to content

vllm.distributed.eplb.eplb_state

Expert parallelism load balancer (EPLB) metrics and states.

Glossary

  • Logical Expert: An expert that is part of the model's logical structure. It holds a set of weights and is replicated across multiple physical experts.
  • Redundant Expert: To achieve load balancing, for some popular logical experts, we create additional copies of the expert weights. During inference, each of these copies can be routed to by the same set of tokens.
  • Physical Expert: An expert that is instantiated on a specific device. It is a replica of a logical expert and can be rearranged across devices. I.e., one logical expert may have multiple sets of weights initialized on different devices, and each of these sets is a physical expert.
  • Local Physical Expert: A physical expert that is instantiated on the current device.

For example: DeepSeek-R1 has 256 logical experts, so each MoE layer has 256 sets of linear layer weights in the model parameters. If we add 32 redundant experts, DeepSeek-R1 will have 256 + 32 = 288 physical experts in total. And when deploying, we'll have 288 sets of linear layer weights for each MoE layer. If we have 32 EP ranks, then each GPU will hold 288 / 32 = 9 local physical experts.

logger module-attribute

logger = init_logger(__name__)

EplbState dataclass

EPLB metrics.

Source code in vllm/distributed/eplb/eplb_state.py
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
@dataclass
class EplbState:
    """EPLB metrics."""

    physical_to_logical_map: torch.Tensor
    """
    Mapping from physical experts to logical experts.

    Shape: (num_moe_layers, num_physical_experts)

    # Example

    For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
    EP ranks, the mapping could look like this:

    ```
    [[0, 1, 2, 3, 0, 1],
     [0, 2, 0, 1, 0, 3]]
    ```
    """
    logical_to_physical_map: torch.Tensor
    """
    Mapping from logical experts to physical experts.

    This is a sparse matrix, where -1 indicates no mapping.

    Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)

    # Example

    For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
    EP ranks, the mapping could look like this:

    ```
    [[[0, 4, -1],
      [1, 5, -1],
      [2, -1, -1],
      [3, -1, -1]],
     [[0, 2, 4],
      [3, -1, -1],
      [1, -1, -1],
      [5, -1, -1]]]
    ```
    """
    logical_replica_count: torch.Tensor
    """
    Number of replicas for each logical expert.
    This is exactly the non-`-1` count in the `logical_to_physical_map`.

    Shape: (num_moe_layers, num_logical_experts)

    # Example
    For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
    EP ranks, the count could look like this:

    ```
    [[2, 2, 1, 1],
     [3, 1, 1, 1]]
    """

    expert_load_pass: torch.Tensor
    """
    Expert load during this forward pass. 
    We use the token count each expert processes as the load.

    Shape: (num_moe_layers, num_physical_experts)
    """
    expert_load_window: torch.Tensor
    """
    A sliding window of expert load.

    Shape: (window_size, num_moe_layers, num_physical_experts)

    NOTE: The expert_load_view now records load for all physical experts
    rather than just local experts. This ensures consistent load statistics
    across different dispatch methods (naive all-to-all, DeepEP, pplx-kernels).
    The recorded load will be multiplied by dp_size when using naive all-to-all
    due to each DP rank contributing the same token set to the calculation.
    See:
    https://github.com/vllm-project/vllm/pull/22167#pullrequestreview-3086143856
    """
    expert_load_window_step: int = 0
    """
    Current step in the sliding window.

    Different from `expert_rearrangement_step`, each EP rank may have its own
    `expert_load_window_step`.
    """
    expert_load_window_size: int = 0
    """
    Size of the expert load sliding window.
    This is a constant and is taken from the config.
    """

    expert_rearrangement_step: int = 0
    """
    Steps after last rearrangement.
    Will trigger a rearrangement if it exceeds the threshold.

    NOTE: Keep in mind that all EP ranks need to have the same
    `expert_rearrangement_step` value to ensure synchronization.
    Otherwise, the rearrangement will hang at collective
    communication calls.
    """
    expert_rearrangement_step_interval: int = 0
    """
    Interval for expert rearrangement steps.
    This is a constant and is taken from the config.
    """

    @staticmethod
    def build_initial_global_physical_to_logical_map(
        num_routed_experts: int,
        num_redundant_experts: int,
    ) -> Sequence[int]:
        """
        Build an initial expert arrangement using the following structure:
        [original routed experts, redundant experts]

        Returns:
            physical_to_logical_map (Sequence[int]): A list of integers,
                where each integer is the index of the logical expert
                that the corresponding physical expert maps to.
        """
        global_physical_to_logical_map = list(range(num_routed_experts))
        global_physical_to_logical_map += [
            i % num_routed_experts for i in range(num_redundant_experts)
        ]
        return global_physical_to_logical_map

    @classmethod
    def build(
        cls,
        model: MixtureOfExperts,
        device: torch.device,
        parallel_config: ParallelConfig,
        global_expert_load: Optional[torch.Tensor] = None,
        old_global_expert_indices: Optional[torch.Tensor] = None,
        rank_mapping: Optional[dict[int, int]] = None,
    ) -> "EplbState":
        """
        Build the initial EPLB state.
        """
        physical_to_logical_map_list = (
            cls.build_initial_global_physical_to_logical_map(
                model.num_routed_experts,
                model.num_redundant_experts,
            ))
        physical_to_logical_map = torch.tensor(
            physical_to_logical_map_list,
            device=device,
        )
        # Assuming 8 GPUs per node, this supports up to
        # (1023 + 1) / 8 = 128 nodes for now.
        # TODO(rui): make this configurable
        MAX_EXPERT_REDUNDANCY = 1023
        assert model.num_redundant_experts <= MAX_EXPERT_REDUNDANCY, (
            f"num_redundant_experts {model.num_redundant_experts} "
            f"must be less than or equal to {MAX_EXPERT_REDUNDANCY}")
        max_slots_per_logical_expert = MAX_EXPERT_REDUNDANCY + 1
        logical_to_physical_map = torch.full(
            (model.num_logical_experts, max_slots_per_logical_expert),
            -1,
            device=device,
        )
        logical_replica_count = torch.zeros(
            (model.num_logical_experts, ),
            device=device,
            dtype=torch.long,
        )

        for i in range(model.num_physical_experts):
            logical_idx = physical_to_logical_map[i]
            logical_to_physical_map[logical_idx,
                                    logical_replica_count[logical_idx]] = i
            logical_replica_count[logical_idx] += 1

        # Duplicate initial mapping for all layers
        physical_to_logical_map = physical_to_logical_map.unsqueeze(0).expand(
            model.num_moe_layers,
            -1,
        ).contiguous()
        logical_to_physical_map = logical_to_physical_map.unsqueeze(0).expand(
            model.num_moe_layers,
            -1,
            -1,
        ).contiguous()
        logical_replica_count = logical_replica_count.unsqueeze(0).expand(
            model.num_moe_layers,
            -1,
        ).contiguous()

        expert_load_pass = torch.zeros(
            (model.num_moe_layers, model.num_physical_experts),
            dtype=torch.int32,
            device=device,
        )
        expert_load_window_size = parallel_config.eplb_config.window_size
        expert_load_window = torch.zeros(
            (expert_load_window_size, model.num_moe_layers,
             model.num_physical_experts),
            dtype=torch.int32,
            device=device,
        )

        # Set the initial progress of rearrangement to 3/4
        eplb_step_interval = parallel_config.eplb_config.step_interval
        expert_rearrangement_step = max(
            0, eplb_step_interval - eplb_step_interval // 4)

        if global_expert_load is not None:
            ep_group = get_ep_group().device_group
            assert global_expert_load.shape == (model.num_moe_layers,
                                                model.num_logical_experts)
            assert global_expert_load.dtype == torch.int64

            num_replicas = model.num_physical_experts
            num_groups = model.num_expert_groups
            num_nodes = get_node_count()
            num_gpus = ep_group.size()

            if num_gpus % num_nodes != 0:
                num_nodes = 1
                logger.warning_once(
                    f"num_gpus % num_nodes != 0, "
                    "not using hierarchical rearrangement algorithm.\n"
                    f"{num_gpus=}, {num_nodes=}")

            # Get new expert mappings
            (
                new_physical_to_logical_map,
                new_logical_to_physical_map,
                new_logical_replica_count,
            ) = (rebalance_experts(
                global_expert_load,
                num_replicas,
                num_groups,
                num_nodes,
                num_gpus,
            ))

            max_physical_slots = new_logical_to_physical_map.shape[-1]
            assert max_physical_slots <= logical_to_physical_map.shape[-1]
            new_logical_to_physical_map = torch.nn.functional.pad(
                new_logical_to_physical_map,
                (0, logical_to_physical_map.shape[-1] - max_physical_slots),
                value=-1,
            )
            physical_to_logical_map = new_physical_to_logical_map.to(device)
            logical_to_physical_map.copy_(new_logical_to_physical_map)
            logical_replica_count.copy_(new_logical_replica_count)

        model.set_eplb_state(
            expert_load_pass,
            logical_to_physical_map,
            logical_replica_count,
        )
        if global_expert_load is not None:
            rearrange_expert_weights_inplace(
                old_global_expert_indices,
                new_physical_to_logical_map,
                model.expert_weights,
                ep_group,
                False,
                rank_mapping,
            )
            expert_rearrangement_step = 0

        return cls(
            physical_to_logical_map,
            logical_to_physical_map,
            logical_replica_count,
            expert_load_pass,
            expert_load_window,
            expert_load_window_size=expert_load_window_size,
            expert_rearrangement_step=expert_rearrangement_step,
            expert_rearrangement_step_interval=eplb_step_interval,
        )

    def step(self,
             model: MixtureOfExperts,
             is_dummy: bool = False,
             is_profile: bool = False,
             log_stats: bool = False) -> None:
        """
        Step the EPLB state.

        Args:
            model (MixtureOfExperts): The MoE model.
            is_dummy (bool): If `True`, this is a dummy step and the load
              metrics recorded in this forward pass will not count. Defaults
              to `False`.
            is_profile (bool): If `True`, perform a dummy rearrangement
              with maximum communication cost. This is used in `profile_run`
              to reserve enough memory for the communication buffer.
            log_stats (bool): If `True`, log the expert load metrics.

        # Stats
            The metrics are all summed up across layers.
            - `avg_tokens`: The average load across ranks.
            - `max_tokens`: The maximum load across ranks.
            - `balancedness`: The ratio of average load to maximum load.
        """

        if is_profile:
            self.rearrange(model, is_profile=True)
            return

        if is_dummy:
            # Do not record load metrics for dummy steps
            self.expert_load_pass.zero_()

        if log_stats:
            # total_expert_load_pass: (num_moe_layers, num_physical_experts)
            total_expert_load_pass = self.expert_load_pass.clone()

            # Collect load metrics from all ranks
            ep_group = get_ep_group().device_group
            all_reduce(total_expert_load_pass, group=ep_group)

            # num_tokens_per_rank: (num_moe_layers, num_ranks)
            num_tokens_per_rank = total_expert_load_pass.reshape(
                total_expert_load_pass.shape[0], ep_group.size(),
                -1).sum(dim=-1).float()

            # Compute balancedness ratio:
            # for each layer:
            #   (mean load across ranks) / (max load across ranks)
            avg_tokens_tensor = num_tokens_per_rank.mean(dim=0).sum(dim=0)
            max_tokens_tensor = num_tokens_per_rank.max(dim=0).values.sum(
                dim=0)

            # Just to make type checker happy
            tokens_tensors: list[float] = torch.stack(
                [avg_tokens_tensor, max_tokens_tensor]).tolist()
            avg_tokens, max_tokens = tokens_tensors
            balancedness = avg_tokens / max_tokens if max_tokens > 0 else 0.0

            if ep_group.rank() == 0:
                logger.info(
                    "EPLB step: avg_tokens=%.2f, max_tokens=%d, "
                    "balancedness=%.4f", avg_tokens, max_tokens, balancedness)

        # Update the expert load sliding window
        if not is_dummy:
            self.expert_load_window[self.expert_load_window_step] = (
                self.expert_load_pass.clone())
            self.expert_load_window_step += 1
            if self.expert_load_window_step >= self.expert_load_window_size:
                self.expert_load_window_step = 0
            self.expert_load_pass.zero_()

        # Step the expert rearrangement step
        # Note that even if this is a dummy step, we still increment the
        # rearrangement step and perform rearrangement to ensure all ranks are
        # performing collective communication.
        self.expert_rearrangement_step += 1
        if (self.expert_rearrangement_step
                >= self.expert_rearrangement_step_interval):
            self.expert_rearrangement_step = 0
            self.rearrange(model)

    def rearrange(self,
                  model: MixtureOfExperts,
                  is_profile: bool = False,
                  execute_shuffle: bool = True,
                  global_expert_load: Optional[torch.Tensor] = None,
                  rank_mapping: Optional[dict[int, int]] = None) -> None:
        """
        Rearrange the experts according to the current load.
        """

        ep_group = get_ep_group().device_group
        ep_rank = ep_group.rank()

        time_start = None
        is_main_rank = ep_rank == 0
        if is_main_rank:
            torch.cuda.synchronize()
            time_start = time.perf_counter()
            logger.info("Rearranging experts %s...",
                        "(profile)" if is_profile else "")

        if global_expert_load is None:
            # Map the physical expert load to global logical experts
            logical_expert_load_window = torch.zeros(
                self.expert_load_window_size,
                model.num_moe_layers,
                model.num_logical_experts,
                dtype=self.expert_load_window.dtype,
                device=self.expert_load_window.device,
            )
            logical_expert_load_window.scatter_add_(
                dim=-1,
                index=self.physical_to_logical_map.unsqueeze(0).expand_as(
                    self.expert_load_window).long(),
                src=self.expert_load_window,
            )

            if not execute_shuffle:
                metadata = torch.tensor(
                    [
                        model.num_moe_layers, model.num_logical_experts,
                        self.physical_to_logical_map.shape[1]
                    ],
                    dtype=torch.int32,
                    device="cpu",
                )
                torch.distributed.broadcast(metadata,
                                            group=get_ep_group().cpu_group,
                                            group_src=0)

            # Perform all-reduce to get the expert load across all ranks
            global_expert_load_window = logical_expert_load_window.sum(dim=0)
            all_reduce(global_expert_load_window, group=ep_group)

            if not execute_shuffle:
                # (num_moe_layers, old_num_physical_experts)
                old_global_expert_indices = self.physical_to_logical_map
                torch.distributed.broadcast(old_global_expert_indices,
                                            group=ep_group,
                                            group_src=0)
                return global_expert_load_window
        else:
            assert execute_shuffle
            global_expert_load_window = global_expert_load

        # TODO(bowen): Treat differently for prefill and decode nodes
        num_replicas = model.num_physical_experts
        num_groups = model.num_expert_groups
        if rank_mapping is not None and len(rank_mapping) == ep_group.size():
            # NOTE(yongji): scale down, we need to rebalance the experts on
            # remaining GPUs, transfer the experts while we haven't shutdown
            # the GPUs to be released.
            cpu_group = get_ep_group().cpu_group
            num_nodes = _node_count_with_rank_mapping(cpu_group, rank_mapping)
            num_gpus = sum(new_rank != -1
                           for new_rank in rank_mapping.values())
            num_replicas = num_replicas // ep_group.size(
            ) * num_gpus  # handle num replicas change
        else:
            num_nodes = get_node_count()
            num_gpus = ep_group.size()

        if num_gpus % num_nodes != 0:
            self.num_nodes = 1
            logger.warning_once(
                f"num_gpus % num_nodes != 0, "
                "not using hierarchical rearrangement algorithm.\n"
                f"{num_gpus=}, {num_nodes=}")

        # Get new expert mappings
        (
            new_physical_to_logical_map,
            new_logical_to_physical_map,
            new_logical_replica_count,
        ) = (rebalance_experts(
            global_expert_load_window,
            num_replicas,
            num_groups,
            num_nodes,
            num_gpus,
        ))

        # Update expert weights
        rearrange_expert_weights_inplace(
            self.physical_to_logical_map,
            new_physical_to_logical_map,
            model.expert_weights,
            ep_group,
            is_profile,
            rank_mapping,
        )

        if not is_profile:
            if self.physical_to_logical_map.shape[
                    1] != new_physical_to_logical_map.shape[1]:
                self.physical_to_logical_map = new_physical_to_logical_map.to(
                    self.physical_to_logical_map.device)
            else:
                self.physical_to_logical_map.copy_(new_physical_to_logical_map)
            max_physical_slots = new_logical_to_physical_map.shape[-1]
            assert max_physical_slots <= self.logical_to_physical_map.shape[-1]
            new_logical_to_physical_map = torch.nn.functional.pad(
                new_logical_to_physical_map,
                (0,
                 self.logical_to_physical_map.shape[-1] - max_physical_slots),
                value=-1,
            )
            self.logical_to_physical_map.copy_(new_logical_to_physical_map)
            self.logical_replica_count.copy_(new_logical_replica_count)

        if is_main_rank:
            assert time_start is not None
            torch.cuda.synchronize()
            time_end = time.perf_counter()
            logger.info(
                "Rearranged experts%sin %.2f seconds.",
                " (profile) " if is_profile else " ",
                time_end - time_start,
            )

    @staticmethod
    def recv_state() -> tuple[torch.Tensor, torch.Tensor]:
        """
        Receive the expert load and old placement from the master rank.
        """
        ep_group = get_ep_group()
        metadata = torch.empty(3, dtype=torch.int32, device="cpu")
        torch.distributed.broadcast(metadata,
                                    group=ep_group.cpu_group,
                                    group_src=0)
        num_moe_layers, num_logical_experts, num_old_physical_experts = (
            metadata.tolist())
        global_expert_load = torch.zeros(
            (num_moe_layers, num_logical_experts),
            dtype=torch.int64,
            device=ep_group.device,
        )
        all_reduce(global_expert_load, group=ep_group.device_group)
        old_global_expert_indices = torch.empty(
            (num_moe_layers, num_old_physical_experts),
            dtype=torch.int64,
            device=ep_group.device,
        )
        torch.distributed.broadcast(old_global_expert_indices,
                                    group=ep_group.device_group,
                                    group_src=0)

        return global_expert_load, old_global_expert_indices

expert_load_pass instance-attribute

expert_load_pass: Tensor

Expert load during this forward pass. We use the token count each expert processes as the load.

Shape: (num_moe_layers, num_physical_experts)

expert_load_window instance-attribute

expert_load_window: Tensor

A sliding window of expert load.

Shape: (window_size, num_moe_layers, num_physical_experts)

NOTE: The expert_load_view now records load for all physical experts rather than just local experts. This ensures consistent load statistics across different dispatch methods (naive all-to-all, DeepEP, pplx-kernels). The recorded load will be multiplied by dp_size when using naive all-to-all due to each DP rank contributing the same token set to the calculation. See: https://github.com/vllm-project/vllm/pull/22167#pullrequestreview-3086143856

expert_load_window_size class-attribute instance-attribute

expert_load_window_size: int = 0

Size of the expert load sliding window. This is a constant and is taken from the config.

expert_load_window_step class-attribute instance-attribute

expert_load_window_step: int = 0

Current step in the sliding window.

Different from expert_rearrangement_step, each EP rank may have its own expert_load_window_step.

expert_rearrangement_step class-attribute instance-attribute

expert_rearrangement_step: int = 0

Steps after last rearrangement. Will trigger a rearrangement if it exceeds the threshold.

NOTE: Keep in mind that all EP ranks need to have the same expert_rearrangement_step value to ensure synchronization. Otherwise, the rearrangement will hang at collective communication calls.

expert_rearrangement_step_interval class-attribute instance-attribute

expert_rearrangement_step_interval: int = 0

Interval for expert rearrangement steps. This is a constant and is taken from the config.

logical_replica_count instance-attribute

logical_replica_count: Tensor

Number of replicas for each logical expert. This is exactly the non--1 count in the logical_to_physical_map.

Shape: (num_moe_layers, num_logical_experts)

Example

For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the count could look like this:

``` [[2, 2, 1, 1], [3, 1, 1, 1]]

logical_to_physical_map instance-attribute

logical_to_physical_map: Tensor

Mapping from logical experts to physical experts.

This is a sparse matrix, where -1 indicates no mapping.

Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)

Example

For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:

[[[0, 4, -1],
  [1, 5, -1],
  [2, -1, -1],
  [3, -1, -1]],
 [[0, 2, 4],
  [3, -1, -1],
  [1, -1, -1],
  [5, -1, -1]]]

physical_to_logical_map instance-attribute

physical_to_logical_map: Tensor

Mapping from physical experts to logical experts.

Shape: (num_moe_layers, num_physical_experts)

Example

For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:

[[0, 1, 2, 3, 0, 1],
 [0, 2, 0, 1, 0, 3]]

__init__

__init__(
    physical_to_logical_map: Tensor,
    logical_to_physical_map: Tensor,
    logical_replica_count: Tensor,
    expert_load_pass: Tensor,
    expert_load_window: Tensor,
    expert_load_window_step: int = 0,
    expert_load_window_size: int = 0,
    expert_rearrangement_step: int = 0,
    expert_rearrangement_step_interval: int = 0,
) -> None

build classmethod

build(
    model: MixtureOfExperts,
    device: device,
    parallel_config: ParallelConfig,
    global_expert_load: Optional[Tensor] = None,
    old_global_expert_indices: Optional[Tensor] = None,
    rank_mapping: Optional[dict[int, int]] = None,
) -> EplbState

Build the initial EPLB state.

Source code in vllm/distributed/eplb/eplb_state.py
@classmethod
def build(
    cls,
    model: MixtureOfExperts,
    device: torch.device,
    parallel_config: ParallelConfig,
    global_expert_load: Optional[torch.Tensor] = None,
    old_global_expert_indices: Optional[torch.Tensor] = None,
    rank_mapping: Optional[dict[int, int]] = None,
) -> "EplbState":
    """
    Build the initial EPLB state.
    """
    physical_to_logical_map_list = (
        cls.build_initial_global_physical_to_logical_map(
            model.num_routed_experts,
            model.num_redundant_experts,
        ))
    physical_to_logical_map = torch.tensor(
        physical_to_logical_map_list,
        device=device,
    )
    # Assuming 8 GPUs per node, this supports up to
    # (1023 + 1) / 8 = 128 nodes for now.
    # TODO(rui): make this configurable
    MAX_EXPERT_REDUNDANCY = 1023
    assert model.num_redundant_experts <= MAX_EXPERT_REDUNDANCY, (
        f"num_redundant_experts {model.num_redundant_experts} "
        f"must be less than or equal to {MAX_EXPERT_REDUNDANCY}")
    max_slots_per_logical_expert = MAX_EXPERT_REDUNDANCY + 1
    logical_to_physical_map = torch.full(
        (model.num_logical_experts, max_slots_per_logical_expert),
        -1,
        device=device,
    )
    logical_replica_count = torch.zeros(
        (model.num_logical_experts, ),
        device=device,
        dtype=torch.long,
    )

    for i in range(model.num_physical_experts):
        logical_idx = physical_to_logical_map[i]
        logical_to_physical_map[logical_idx,
                                logical_replica_count[logical_idx]] = i
        logical_replica_count[logical_idx] += 1

    # Duplicate initial mapping for all layers
    physical_to_logical_map = physical_to_logical_map.unsqueeze(0).expand(
        model.num_moe_layers,
        -1,
    ).contiguous()
    logical_to_physical_map = logical_to_physical_map.unsqueeze(0).expand(
        model.num_moe_layers,
        -1,
        -1,
    ).contiguous()
    logical_replica_count = logical_replica_count.unsqueeze(0).expand(
        model.num_moe_layers,
        -1,
    ).contiguous()

    expert_load_pass = torch.zeros(
        (model.num_moe_layers, model.num_physical_experts),
        dtype=torch.int32,
        device=device,
    )
    expert_load_window_size = parallel_config.eplb_config.window_size
    expert_load_window = torch.zeros(
        (expert_load_window_size, model.num_moe_layers,
         model.num_physical_experts),
        dtype=torch.int32,
        device=device,
    )

    # Set the initial progress of rearrangement to 3/4
    eplb_step_interval = parallel_config.eplb_config.step_interval
    expert_rearrangement_step = max(
        0, eplb_step_interval - eplb_step_interval // 4)

    if global_expert_load is not None:
        ep_group = get_ep_group().device_group
        assert global_expert_load.shape == (model.num_moe_layers,
                                            model.num_logical_experts)
        assert global_expert_load.dtype == torch.int64

        num_replicas = model.num_physical_experts
        num_groups = model.num_expert_groups
        num_nodes = get_node_count()
        num_gpus = ep_group.size()

        if num_gpus % num_nodes != 0:
            num_nodes = 1
            logger.warning_once(
                f"num_gpus % num_nodes != 0, "
                "not using hierarchical rearrangement algorithm.\n"
                f"{num_gpus=}, {num_nodes=}")

        # Get new expert mappings
        (
            new_physical_to_logical_map,
            new_logical_to_physical_map,
            new_logical_replica_count,
        ) = (rebalance_experts(
            global_expert_load,
            num_replicas,
            num_groups,
            num_nodes,
            num_gpus,
        ))

        max_physical_slots = new_logical_to_physical_map.shape[-1]
        assert max_physical_slots <= logical_to_physical_map.shape[-1]
        new_logical_to_physical_map = torch.nn.functional.pad(
            new_logical_to_physical_map,
            (0, logical_to_physical_map.shape[-1] - max_physical_slots),
            value=-1,
        )
        physical_to_logical_map = new_physical_to_logical_map.to(device)
        logical_to_physical_map.copy_(new_logical_to_physical_map)
        logical_replica_count.copy_(new_logical_replica_count)

    model.set_eplb_state(
        expert_load_pass,
        logical_to_physical_map,
        logical_replica_count,
    )
    if global_expert_load is not None:
        rearrange_expert_weights_inplace(
            old_global_expert_indices,
            new_physical_to_logical_map,
            model.expert_weights,
            ep_group,
            False,
            rank_mapping,
        )
        expert_rearrangement_step = 0

    return cls(
        physical_to_logical_map,
        logical_to_physical_map,
        logical_replica_count,
        expert_load_pass,
        expert_load_window,
        expert_load_window_size=expert_load_window_size,
        expert_rearrangement_step=expert_rearrangement_step,
        expert_rearrangement_step_interval=eplb_step_interval,
    )

build_initial_global_physical_to_logical_map staticmethod

build_initial_global_physical_to_logical_map(
    num_routed_experts: int, num_redundant_experts: int
) -> Sequence[int]

Build an initial expert arrangement using the following structure: [original routed experts, redundant experts]

Returns:

Name Type Description
physical_to_logical_map Sequence[int]

A list of integers, where each integer is the index of the logical expert that the corresponding physical expert maps to.

Source code in vllm/distributed/eplb/eplb_state.py
@staticmethod
def build_initial_global_physical_to_logical_map(
    num_routed_experts: int,
    num_redundant_experts: int,
) -> Sequence[int]:
    """
    Build an initial expert arrangement using the following structure:
    [original routed experts, redundant experts]

    Returns:
        physical_to_logical_map (Sequence[int]): A list of integers,
            where each integer is the index of the logical expert
            that the corresponding physical expert maps to.
    """
    global_physical_to_logical_map = list(range(num_routed_experts))
    global_physical_to_logical_map += [
        i % num_routed_experts for i in range(num_redundant_experts)
    ]
    return global_physical_to_logical_map

rearrange

rearrange(
    model: MixtureOfExperts,
    is_profile: bool = False,
    execute_shuffle: bool = True,
    global_expert_load: Optional[Tensor] = None,
    rank_mapping: Optional[dict[int, int]] = None,
) -> None

Rearrange the experts according to the current load.

Source code in vllm/distributed/eplb/eplb_state.py
def rearrange(self,
              model: MixtureOfExperts,
              is_profile: bool = False,
              execute_shuffle: bool = True,
              global_expert_load: Optional[torch.Tensor] = None,
              rank_mapping: Optional[dict[int, int]] = None) -> None:
    """
    Rearrange the experts according to the current load.
    """

    ep_group = get_ep_group().device_group
    ep_rank = ep_group.rank()

    time_start = None
    is_main_rank = ep_rank == 0
    if is_main_rank:
        torch.cuda.synchronize()
        time_start = time.perf_counter()
        logger.info("Rearranging experts %s...",
                    "(profile)" if is_profile else "")

    if global_expert_load is None:
        # Map the physical expert load to global logical experts
        logical_expert_load_window = torch.zeros(
            self.expert_load_window_size,
            model.num_moe_layers,
            model.num_logical_experts,
            dtype=self.expert_load_window.dtype,
            device=self.expert_load_window.device,
        )
        logical_expert_load_window.scatter_add_(
            dim=-1,
            index=self.physical_to_logical_map.unsqueeze(0).expand_as(
                self.expert_load_window).long(),
            src=self.expert_load_window,
        )

        if not execute_shuffle:
            metadata = torch.tensor(
                [
                    model.num_moe_layers, model.num_logical_experts,
                    self.physical_to_logical_map.shape[1]
                ],
                dtype=torch.int32,
                device="cpu",
            )
            torch.distributed.broadcast(metadata,
                                        group=get_ep_group().cpu_group,
                                        group_src=0)

        # Perform all-reduce to get the expert load across all ranks
        global_expert_load_window = logical_expert_load_window.sum(dim=0)
        all_reduce(global_expert_load_window, group=ep_group)

        if not execute_shuffle:
            # (num_moe_layers, old_num_physical_experts)
            old_global_expert_indices = self.physical_to_logical_map
            torch.distributed.broadcast(old_global_expert_indices,
                                        group=ep_group,
                                        group_src=0)
            return global_expert_load_window
    else:
        assert execute_shuffle
        global_expert_load_window = global_expert_load

    # TODO(bowen): Treat differently for prefill and decode nodes
    num_replicas = model.num_physical_experts
    num_groups = model.num_expert_groups
    if rank_mapping is not None and len(rank_mapping) == ep_group.size():
        # NOTE(yongji): scale down, we need to rebalance the experts on
        # remaining GPUs, transfer the experts while we haven't shutdown
        # the GPUs to be released.
        cpu_group = get_ep_group().cpu_group
        num_nodes = _node_count_with_rank_mapping(cpu_group, rank_mapping)
        num_gpus = sum(new_rank != -1
                       for new_rank in rank_mapping.values())
        num_replicas = num_replicas // ep_group.size(
        ) * num_gpus  # handle num replicas change
    else:
        num_nodes = get_node_count()
        num_gpus = ep_group.size()

    if num_gpus % num_nodes != 0:
        self.num_nodes = 1
        logger.warning_once(
            f"num_gpus % num_nodes != 0, "
            "not using hierarchical rearrangement algorithm.\n"
            f"{num_gpus=}, {num_nodes=}")

    # Get new expert mappings
    (
        new_physical_to_logical_map,
        new_logical_to_physical_map,
        new_logical_replica_count,
    ) = (rebalance_experts(
        global_expert_load_window,
        num_replicas,
        num_groups,
        num_nodes,
        num_gpus,
    ))

    # Update expert weights
    rearrange_expert_weights_inplace(
        self.physical_to_logical_map,
        new_physical_to_logical_map,
        model.expert_weights,
        ep_group,
        is_profile,
        rank_mapping,
    )

    if not is_profile:
        if self.physical_to_logical_map.shape[
                1] != new_physical_to_logical_map.shape[1]:
            self.physical_to_logical_map = new_physical_to_logical_map.to(
                self.physical_to_logical_map.device)
        else:
            self.physical_to_logical_map.copy_(new_physical_to_logical_map)
        max_physical_slots = new_logical_to_physical_map.shape[-1]
        assert max_physical_slots <= self.logical_to_physical_map.shape[-1]
        new_logical_to_physical_map = torch.nn.functional.pad(
            new_logical_to_physical_map,
            (0,
             self.logical_to_physical_map.shape[-1] - max_physical_slots),
            value=-1,
        )
        self.logical_to_physical_map.copy_(new_logical_to_physical_map)
        self.logical_replica_count.copy_(new_logical_replica_count)

    if is_main_rank:
        assert time_start is not None
        torch.cuda.synchronize()
        time_end = time.perf_counter()
        logger.info(
            "Rearranged experts%sin %.2f seconds.",
            " (profile) " if is_profile else " ",
            time_end - time_start,
        )

recv_state staticmethod

recv_state() -> tuple[Tensor, Tensor]

Receive the expert load and old placement from the master rank.

Source code in vllm/distributed/eplb/eplb_state.py
@staticmethod
def recv_state() -> tuple[torch.Tensor, torch.Tensor]:
    """
    Receive the expert load and old placement from the master rank.
    """
    ep_group = get_ep_group()
    metadata = torch.empty(3, dtype=torch.int32, device="cpu")
    torch.distributed.broadcast(metadata,
                                group=ep_group.cpu_group,
                                group_src=0)
    num_moe_layers, num_logical_experts, num_old_physical_experts = (
        metadata.tolist())
    global_expert_load = torch.zeros(
        (num_moe_layers, num_logical_experts),
        dtype=torch.int64,
        device=ep_group.device,
    )
    all_reduce(global_expert_load, group=ep_group.device_group)
    old_global_expert_indices = torch.empty(
        (num_moe_layers, num_old_physical_experts),
        dtype=torch.int64,
        device=ep_group.device,
    )
    torch.distributed.broadcast(old_global_expert_indices,
                                group=ep_group.device_group,
                                group_src=0)

    return global_expert_load, old_global_expert_indices

step

step(
    model: MixtureOfExperts,
    is_dummy: bool = False,
    is_profile: bool = False,
    log_stats: bool = False,
) -> None

Step the EPLB state.

Parameters:

Name Type Description Default
model MixtureOfExperts

The MoE model.

required
is_dummy bool

If True, this is a dummy step and the load metrics recorded in this forward pass will not count. Defaults to False.

False
is_profile bool

If True, perform a dummy rearrangement with maximum communication cost. This is used in profile_run to reserve enough memory for the communication buffer.

False
log_stats bool

If True, log the expert load metrics.

False

Stats

The metrics are all summed up across layers.
- `avg_tokens`: The average load across ranks.
- `max_tokens`: The maximum load across ranks.
- `balancedness`: The ratio of average load to maximum load.
Source code in vllm/distributed/eplb/eplb_state.py
def step(self,
         model: MixtureOfExperts,
         is_dummy: bool = False,
         is_profile: bool = False,
         log_stats: bool = False) -> None:
    """
    Step the EPLB state.

    Args:
        model (MixtureOfExperts): The MoE model.
        is_dummy (bool): If `True`, this is a dummy step and the load
          metrics recorded in this forward pass will not count. Defaults
          to `False`.
        is_profile (bool): If `True`, perform a dummy rearrangement
          with maximum communication cost. This is used in `profile_run`
          to reserve enough memory for the communication buffer.
        log_stats (bool): If `True`, log the expert load metrics.

    # Stats
        The metrics are all summed up across layers.
        - `avg_tokens`: The average load across ranks.
        - `max_tokens`: The maximum load across ranks.
        - `balancedness`: The ratio of average load to maximum load.
    """

    if is_profile:
        self.rearrange(model, is_profile=True)
        return

    if is_dummy:
        # Do not record load metrics for dummy steps
        self.expert_load_pass.zero_()

    if log_stats:
        # total_expert_load_pass: (num_moe_layers, num_physical_experts)
        total_expert_load_pass = self.expert_load_pass.clone()

        # Collect load metrics from all ranks
        ep_group = get_ep_group().device_group
        all_reduce(total_expert_load_pass, group=ep_group)

        # num_tokens_per_rank: (num_moe_layers, num_ranks)
        num_tokens_per_rank = total_expert_load_pass.reshape(
            total_expert_load_pass.shape[0], ep_group.size(),
            -1).sum(dim=-1).float()

        # Compute balancedness ratio:
        # for each layer:
        #   (mean load across ranks) / (max load across ranks)
        avg_tokens_tensor = num_tokens_per_rank.mean(dim=0).sum(dim=0)
        max_tokens_tensor = num_tokens_per_rank.max(dim=0).values.sum(
            dim=0)

        # Just to make type checker happy
        tokens_tensors: list[float] = torch.stack(
            [avg_tokens_tensor, max_tokens_tensor]).tolist()
        avg_tokens, max_tokens = tokens_tensors
        balancedness = avg_tokens / max_tokens if max_tokens > 0 else 0.0

        if ep_group.rank() == 0:
            logger.info(
                "EPLB step: avg_tokens=%.2f, max_tokens=%d, "
                "balancedness=%.4f", avg_tokens, max_tokens, balancedness)

    # Update the expert load sliding window
    if not is_dummy:
        self.expert_load_window[self.expert_load_window_step] = (
            self.expert_load_pass.clone())
        self.expert_load_window_step += 1
        if self.expert_load_window_step >= self.expert_load_window_size:
            self.expert_load_window_step = 0
        self.expert_load_pass.zero_()

    # Step the expert rearrangement step
    # Note that even if this is a dummy step, we still increment the
    # rearrangement step and perform rearrangement to ensure all ranks are
    # performing collective communication.
    self.expert_rearrangement_step += 1
    if (self.expert_rearrangement_step
            >= self.expert_rearrangement_step_interval):
        self.expert_rearrangement_step = 0
        self.rearrange(model)

_node_count_with_rank_mapping

_node_count_with_rank_mapping(
    pg: Union[ProcessGroup, StatelessProcessGroup],
    rank_mapping: dict[int, int],
) -> int
Source code in vllm/distributed/eplb/eplb_state.py
def _node_count_with_rank_mapping(
    pg: Union[ProcessGroup, StatelessProcessGroup],
    rank_mapping: dict[int, int],
) -> int:
    if isinstance(pg, ProcessGroup):
        world_size = torch.distributed.get_world_size(group=pg)
    else:
        world_size = pg.world_size

    if world_size == 1:
        return 1

    # Build node assignment map
    node_assignment = [0] * world_size  # rank -> node_id
    next_node_id = 0

    for current_rank in range(world_size):
        if node_assignment[current_rank] != 0:
            continue  # Already assigned to a node

        assert current_rank in rank_mapping
        if rank_mapping[current_rank] == -1:
            continue  # Pending shutdown

        # Assign current rank to a new node
        next_node_id += 1
        node_assignment[current_rank] = next_node_id

        # Find all ranks on the same node as current_rank
        same_node_flags = in_the_same_node_as(pg, current_rank)
        for other_rank, is_same_node in enumerate(same_node_flags):
            if is_same_node and node_assignment[other_rank] == 0:
                node_assignment[other_rank] = next_node_id

    return next_node_id