vllm.engine.metrics
LoggingStatLogger ¶
Bases: StatLoggerBase
LoggingStatLogger is used in LLMEngine to log to Stdout.
Source code in vllm/engine/metrics.py
__init__ ¶
__init__(
local_interval: float, vllm_config: VllmConfig
) -> None
_reset ¶
Source code in vllm/engine/metrics.py
info ¶
info(type: str, obj: SupportsMetricsInfo) -> None
log ¶
log(stats: Stats) -> None
Called by LLMEngine. Logs to Stdout every self.local_interval seconds.
Source code in vllm/engine/metrics.py
Metrics ¶
vLLM uses a multiprocessing-based frontend for the OpenAI server. This means that we need to run prometheus_client in multiprocessing mode See https://prometheus.github.io/client_python/multiprocess/ for more details on limitations.
Source code in vllm/engine/metrics.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
counter_generation_tokens instance-attribute
¶
counter_generation_tokens = _counter_cls(
name="vllm:generation_tokens_total",
documentation="Number of generation tokens processed.",
labelnames=labelnames,
)
counter_num_preemption instance-attribute
¶
counter_num_preemption = _counter_cls(
name="vllm:num_preemptions_total",
documentation="Cumulative number of preemption from the engine.",
labelnames=labelnames,
)
counter_prompt_tokens instance-attribute
¶
counter_prompt_tokens = _counter_cls(
name="vllm:prompt_tokens_total",
documentation="Number of prefill tokens processed.",
labelnames=labelnames,
)
counter_request_success instance-attribute
¶
counter_request_success = _counter_cls(
name="vllm:request_success_total",
documentation="Count of successfully processed requests.",
labelnames=labelnames + [labelname_finish_reason],
)
gauge_gpu_cache_usage instance-attribute
¶
gauge_gpu_cache_usage = _gauge_cls(
name="vllm:gpu_cache_usage_perc",
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames,
multiprocess_mode="sum",
)
gauge_lora_info instance-attribute
¶
gauge_lora_info = _gauge_cls(
name="vllm:lora_requests_info",
documentation="Running stats on lora requests.",
labelnames=[
labelname_running_lora_adapters,
labelname_max_lora,
labelname_waiting_lora_adapters,
],
multiprocess_mode="livemostrecent",
)
gauge_scheduler_running instance-attribute
¶
gauge_scheduler_running = _gauge_cls(
name="vllm:num_requests_running",
documentation="Number of requests currently running on GPU.",
labelnames=labelnames,
multiprocess_mode="sum",
)
gauge_scheduler_waiting instance-attribute
¶
gauge_scheduler_waiting = _gauge_cls(
name="vllm:num_requests_waiting",
documentation="Number of requests waiting to be processed.",
labelnames=labelnames,
multiprocess_mode="sum",
)
histogram_decode_time_request instance-attribute
¶
histogram_decode_time_request = _histogram_cls(
name="vllm:request_decode_time_seconds",
documentation="Histogram of time spent in DECODE phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
histogram_e2e_time_request instance-attribute
¶
histogram_e2e_time_request = _histogram_cls(
name="vllm:e2e_request_latency_seconds",
documentation="Histogram of end to end request latency in seconds.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
histogram_inference_time_request instance-attribute
¶
histogram_inference_time_request = _histogram_cls(
name="vllm:request_inference_time_seconds",
documentation="Histogram of time spent in RUNNING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
histogram_iteration_tokens instance-attribute
¶
histogram_iteration_tokens = _histogram_cls(
name="vllm:iteration_tokens_total",
documentation="Histogram of number of tokens per engine_step.",
labelnames=labelnames,
buckets=[
1,
8,
16,
32,
64,
128,
256,
512,
1024,
2048,
4096,
8192,
16384,
],
)
histogram_max_num_generation_tokens_request instance-attribute
¶
histogram_max_num_generation_tokens_request = _histogram_cls(
name="vllm:request_max_num_generation_tokens",
documentation="Histogram of maximum number of requested generation tokens.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
histogram_max_tokens_request instance-attribute
¶
histogram_max_tokens_request = _histogram_cls(
name="vllm:request_params_max_tokens",
documentation="Histogram of the max_tokens request parameter.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
histogram_n_request instance-attribute
¶
histogram_n_request = _histogram_cls(
name="vllm:request_params_n",
documentation="Histogram of the n request parameter.",
labelnames=labelnames,
buckets=[1, 2, 5, 10, 20],
)
histogram_num_generation_tokens_request instance-attribute
¶
histogram_num_generation_tokens_request = _histogram_cls(
name="vllm:request_generation_tokens",
documentation="Number of generation tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
histogram_num_prompt_tokens_request instance-attribute
¶
histogram_num_prompt_tokens_request = _histogram_cls(
name="vllm:request_prompt_tokens",
documentation="Number of prefill tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
histogram_prefill_time_request instance-attribute
¶
histogram_prefill_time_request = _histogram_cls(
name="vllm:request_prefill_time_seconds",
documentation="Histogram of time spent in PREFILL phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
histogram_queue_time_request instance-attribute
¶
histogram_queue_time_request = _histogram_cls(
name="vllm:request_queue_time_seconds",
documentation="Histogram of time spent in WAITING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
histogram_time_per_output_token instance-attribute
¶
histogram_time_per_output_token = _histogram_cls(
name="vllm:time_per_output_token_seconds",
documentation="Histogram of time per output token in seconds.",
labelnames=labelnames,
buckets=[
0.01,
0.025,
0.05,
0.075,
0.1,
0.15,
0.2,
0.3,
0.4,
0.5,
0.75,
1.0,
2.5,
5.0,
7.5,
10.0,
20.0,
40.0,
80.0,
],
)
histogram_time_to_first_token instance-attribute
¶
histogram_time_to_first_token = _histogram_cls(
name="vllm:time_to_first_token_seconds",
documentation="Histogram of time to first token in seconds.",
labelnames=labelnames,
buckets=[
0.001,
0.005,
0.01,
0.02,
0.04,
0.06,
0.08,
0.1,
0.25,
0.5,
0.75,
1.0,
2.5,
5.0,
7.5,
10.0,
20.0,
40.0,
80.0,
160.0,
640.0,
2560.0,
],
)
labelname_finish_reason class-attribute
instance-attribute
¶
labelname_running_lora_adapters class-attribute
instance-attribute
¶
labelname_waiting_lora_adapters class-attribute
instance-attribute
¶
__init__ ¶
__init__(labelnames: List[str], vllm_config: VllmConfig)
Source code in vllm/engine/metrics.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
_unregister_vllm_metrics ¶
PrometheusStatLogger ¶
Bases: StatLoggerBase
PrometheusStatLogger is used LLMEngine to log to Promethus.
Source code in vllm/engine/metrics.py
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
|
metrics instance-attribute
¶
metrics = _metrics_cls(
labelnames=list(keys()), vllm_config=vllm_config
)
__init__ ¶
__init__(
local_interval: float,
labels: Dict[str, str],
vllm_config: VllmConfig,
) -> None
Source code in vllm/engine/metrics.py
_log_counter ¶
Source code in vllm/engine/metrics.py
_log_counter_labels ¶
Source code in vllm/engine/metrics.py
_log_gauge ¶
_log_gauge_string ¶
_log_histogram ¶
_log_prometheus ¶
_log_prometheus(stats: Stats) -> None
Source code in vllm/engine/metrics.py
info ¶
info(type: str, obj: SupportsMetricsInfo) -> None
Source code in vllm/engine/metrics.py
log ¶
log(stats: Stats)
Logs to prometheus and tracked stats every iteration.
Source code in vllm/engine/metrics.py
RayMetrics ¶
Bases: Metrics
RayMetrics is used by RayPrometheusStatLogger to log to Ray metrics. Provides the same metrics as Metrics but uses Ray's util.metrics library.
Source code in vllm/engine/metrics.py
_counter_cls class-attribute
instance-attribute
¶
_counter_cls: Type[Counter] = cast(
Type[Counter], _RayCounterWrapper
)
_gauge_cls class-attribute
instance-attribute
¶
_gauge_cls: Type[Gauge] = cast(
Type[Gauge], _RayGaugeWrapper
)
_histogram_cls class-attribute
instance-attribute
¶
_histogram_cls: Type[Histogram] = cast(
Type[Histogram], _RayHistogramWrapper
)
__init__ ¶
__init__(labelnames: List[str], vllm_config: VllmConfig)
RayPrometheusStatLogger ¶
Bases: PrometheusStatLogger
RayPrometheusStatLogger uses Ray metrics instead.
Source code in vllm/engine/metrics.py
info ¶
info(type: str, obj: SupportsMetricsInfo) -> None
_RayCounterWrapper ¶
Wraps around ray.util.metrics.Counter to provide same API as prometheus_client.Counter
Source code in vllm/engine/metrics.py
_RayGaugeWrapper ¶
Wraps around ray.util.metrics.Gauge to provide same API as prometheus_client.Gauge
Source code in vllm/engine/metrics.py
_gauge instance-attribute
¶
__init__ ¶
__init__(
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None,
multiprocess_mode: str = "",
)
Source code in vllm/engine/metrics.py
labels ¶
set ¶
_RayHistogramWrapper ¶
Wraps around ray.util.metrics.Histogram to provide same API as prometheus_client.Histogram
Source code in vllm/engine/metrics.py
_histogram instance-attribute
¶
_histogram = Histogram(
name=name,
description=documentation,
tag_keys=labelnames_tuple,
boundaries=boundaries,
)
__init__ ¶
__init__(
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None,
buckets: Optional[List[float]] = None,
)
Source code in vllm/engine/metrics.py
labels ¶
build_1_2_3_5_8_buckets ¶
Example:
build_1_2_3_5_8_buckets(100) [1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100]
build_1_2_5_buckets ¶
build_buckets ¶
Builds a list of buckets with increasing powers of 10 multiplied by mantissa values until the value exceeds the specified maximum.