vllm.entrypoints.chat_utils
ChatCompletionContentPartParam module-attribute
¶
ChatCompletionContentPartParam: TypeAlias = Union[
ChatCompletionContentPartParam,
ChatCompletionContentPartAudioParam,
ChatCompletionContentPartInputAudioParam,
ChatCompletionContentPartVideoParam,
ChatCompletionContentPartRefusalParam,
CustomChatCompletionContentPILImageParam,
CustomChatCompletionContentSimpleImageParam,
ChatCompletionContentPartImageEmbedsParam,
CustomChatCompletionContentSimpleAudioParam,
CustomChatCompletionContentSimpleVideoParam,
str,
CustomThinkCompletionContentParam,
]
ChatCompletionMessageParam module-attribute
¶
ChatCompletionMessageParam = Union[
ChatCompletionMessageParam,
CustomChatCompletionMessageParam,
Message,
]
ChatTemplateContentFormatOption module-attribute
¶
ChatTemplateContentFormatOption = Literal[
"auto", "string", "openai"
]
MM_PARSER_MAP module-attribute
¶
MM_PARSER_MAP: dict[
str,
Callable[
[ChatCompletionContentPartParam], _ContentPart
],
] = {
"text": lambda part: get("text", None),
"thinking": lambda part: get("thinking", None),
"input_text": lambda part: get("text", None),
"input_image": lambda part: get("image_url", None),
"image_url": lambda part: get("url", None),
"image_embeds": lambda part: get("image_embeds", None),
"image_pil": lambda part: get("image_pil", None),
"audio_url": lambda part: get("url", None),
"input_audio": lambda part: get("input_audio", None),
"refusal": lambda part: get("refusal", None),
"video_url": lambda part: get("url", None),
}
MODALITY_PLACEHOLDERS_MAP module-attribute
¶
MODALITY_PLACEHOLDERS_MAP = {
"image": "<##IMAGE##>",
"audio": "<##AUDIO##>",
"video": "<##VIDEO##>",
}
VALID_MESSAGE_CONTENT_MM_PART_TYPES module-attribute
¶
VALID_MESSAGE_CONTENT_MM_PART_TYPES = (
"text",
"refusal",
"image_url",
"image_embeds",
"image_pil",
"audio_url",
"input_audio",
"video_url",
)
_AssistantParser module-attribute
¶
_ChatTemplateContentFormat module-attribute
¶
_ChatTemplateContentFormat = Literal['string', 'openai']
_ContentPart module-attribute
¶
_ImageEmbedsParser module-attribute
¶
_ImageEmbedsParser = partial(
cast, ChatCompletionContentPartImageEmbedsParam
)
_InputAudioParser module-attribute
¶
_PILImageParser module-attribute
¶
_PILImageParser = partial(
cast, CustomChatCompletionContentPILImageParam
)
_RefusalParser module-attribute
¶
_cached_load_chat_template module-attribute
¶
_cached_load_chat_template = lru_cache(_load_chat_template)
AsyncMultiModalContentParser ¶
Bases: BaseMultiModalContentParser
Source code in vllm/entrypoints/chat_utils.py
_connector instance-attribute
¶
_connector = MediaConnector(
media_io_kwargs=media_io_kwargs,
allowed_local_media_path=allowed_local_media_path,
)
__init__ ¶
__init__(tracker: AsyncMultiModalItemTracker) -> None
Source code in vllm/entrypoints/chat_utils.py
parse_image_embeds ¶
Source code in vllm/entrypoints/chat_utils.py
parse_image_pil ¶
parse_image_pil(image_pil: Image) -> None
Source code in vllm/entrypoints/chat_utils.py
parse_input_audio ¶
Source code in vllm/entrypoints/chat_utils.py
AsyncMultiModalItemTracker ¶
Bases: BaseMultiModalItemTracker[Awaitable[object]]
Source code in vllm/entrypoints/chat_utils.py
all_mm_data async
¶
all_mm_data() -> Optional[MultiModalDataDict]
Source code in vllm/entrypoints/chat_utils.py
create_parser ¶
create_parser() -> BaseMultiModalContentParser
BaseMultiModalContentParser ¶
Bases: ABC
Source code in vllm/entrypoints/chat_utils.py
__init__ ¶
Source code in vllm/entrypoints/chat_utils.py
_add_placeholder ¶
_add_placeholder(
modality: ModalityStr, placeholder: Optional[str]
)
mm_placeholder_storage ¶
parse_image_embeds abstractmethod
¶
parse_input_audio abstractmethod
¶
BaseMultiModalItemTracker ¶
Tracks multi-modal items in a given request and ensures that the number of multi-modal items in a given request does not exceed the configured maximum per prompt.
Source code in vllm/entrypoints/chat_utils.py
__init__ ¶
__init__(
model_config: ModelConfig, tokenizer: AnyTokenizer
)
add ¶
add(modality: ModalityStr, item: _T) -> Optional[str]
Add a multi-modal item to the current prompt and returns the placeholder string to use, if any.
Source code in vllm/entrypoints/chat_utils.py
create_parser abstractmethod
¶
create_parser() -> BaseMultiModalContentParser
ChatCompletionContentPartAudioParam ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
ChatCompletionContentPartImageEmbedsParam ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
ChatCompletionContentPartVideoParam ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
ConversationMessage ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentPILImageParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a PIL image.
Example: { "image_pil": ImageAsset('cherry_blossom').pil_image }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentSimpleAudioParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a plain audio_url.
Example: { "audio_url": "https://example.com/audio.mp3" }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentSimpleImageParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a plain image_url. This is supported by OpenAI API, although it is not documented.
Example: { "image_url": "https://example.com/image.jpg" }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentSimpleVideoParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a plain audio_url.
Example: { "video_url": "https://example.com/video.mp4" }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionMessageParam ¶
Bases: TypedDict
Enables custom roles in the Chat Completion API.
Source code in vllm/entrypoints/chat_utils.py
content instance-attribute
¶
content: Union[str, list[ChatCompletionContentPartParam]]
The contents of the message.
name instance-attribute
¶
name: str
An optional name for the participant.
Provides the model information to differentiate between participants of the same role.
tool_call_id instance-attribute
¶
Tool call that this message is responding to.
CustomThinkCompletionContentParam ¶
Bases: TypedDict
A Think Completion Content Param that accepts a plain text and a boolean.
Example: { "thinking": "I am thinking about the answer", "closed": True, "type": "thinking" }
Source code in vllm/entrypoints/chat_utils.py
MultiModalContentParser ¶
Bases: BaseMultiModalContentParser
Source code in vllm/entrypoints/chat_utils.py
_connector instance-attribute
¶
_connector = MediaConnector(
media_io_kwargs=media_io_kwargs,
allowed_local_media_path=allowed_local_media_path,
)
__init__ ¶
__init__(tracker: MultiModalItemTracker) -> None
Source code in vllm/entrypoints/chat_utils.py
parse_image_embeds ¶
Source code in vllm/entrypoints/chat_utils.py
parse_input_audio ¶
Source code in vllm/entrypoints/chat_utils.py
MultiModalItemTracker ¶
Bases: BaseMultiModalItemTracker[object]
Source code in vllm/entrypoints/chat_utils.py
all_mm_data ¶
all_mm_data() -> Optional[MultiModalDataDict]
Source code in vllm/entrypoints/chat_utils.py
create_parser ¶
create_parser() -> BaseMultiModalContentParser
PILImage ¶
Bases: BaseModel
A PIL.Image.Image object.
Source code in vllm/entrypoints/chat_utils.py
_detect_content_format cached
¶
_detect_content_format(
chat_template: str,
*,
default: _ChatTemplateContentFormat,
) -> _ChatTemplateContentFormat
Source code in vllm/entrypoints/chat_utils.py
_get_full_multimodal_text_prompt ¶
_get_full_multimodal_text_prompt(
placeholder_storage: dict[str, list],
texts: list[str],
interleave_strings: bool,
) -> str
Combine multimodal prompts for a multimodal language model.
Source code in vllm/entrypoints/chat_utils.py
_get_interleaved_text_prompt ¶
Source code in vllm/entrypoints/chat_utils.py
_is_attr_access ¶
Source code in vllm/entrypoints/chat_utils.py
_is_var_access ¶
_is_var_or_elems_access ¶
Source code in vllm/entrypoints/chat_utils.py
_iter_nodes_assign_content_item ¶
Source code in vllm/entrypoints/chat_utils.py
_iter_nodes_assign_messages_item ¶
Source code in vllm/entrypoints/chat_utils.py
_iter_nodes_assign_var_or_elems ¶
_iter_nodes_assign_var_or_elems(root: Node, varname: str)
Source code in vllm/entrypoints/chat_utils.py
_load_chat_template ¶
_load_chat_template(
chat_template: Optional[Union[Path, str]],
*,
is_literal: bool = False,
) -> Optional[str]
Source code in vllm/entrypoints/chat_utils.py
_log_chat_template_content_format cached
¶
_log_chat_template_content_format(
chat_template: Optional[str],
given_format: ChatTemplateContentFormatOption,
detected_format: ChatTemplateContentFormatOption,
)
Source code in vllm/entrypoints/chat_utils.py
_parse_chat_message_content ¶
_parse_chat_message_content(
message: ChatCompletionMessageParam,
mm_tracker: BaseMultiModalItemTracker,
content_format: _ChatTemplateContentFormat,
interleave_strings: bool,
) -> list[ConversationMessage]
Source code in vllm/entrypoints/chat_utils.py
_parse_chat_message_content_mm_part ¶
_parse_chat_message_content_mm_part(
part: ChatCompletionContentPartParam,
) -> tuple[str, _ContentPart]
Parses a given multi-modal content part based on its type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
part | ChatCompletionContentPartParam | A dict containing the content part, with a potential 'type' field. | required |
Returns:
Type | Description |
---|---|
str | A tuple (part_type, content) where: |
_ContentPart |
|
tuple[str, _ContentPart] |
|
Raises:
Type | Description |
---|---|
ValueError | If the 'type' field is missing and no direct URL is found. |
Source code in vllm/entrypoints/chat_utils.py
_parse_chat_message_content_part ¶
_parse_chat_message_content_part(
part: ChatCompletionContentPartParam,
mm_parser: BaseMultiModalContentParser,
*,
wrap_dicts: bool,
interleave_strings: bool,
) -> Optional[_ContentPart]
Parses a single part of a conversation. If wrap_dicts is True, structured dictionary pieces for texts and images will be wrapped in dictionaries, i.e., {"type": "text", "text", ...} and {"type": "image"}, respectively. Otherwise multimodal data will be handled by mm_parser, and texts will be returned as strings to be joined with multimodal placeholders.
Source code in vllm/entrypoints/chat_utils.py
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 |
|
_parse_chat_message_content_parts ¶
_parse_chat_message_content_parts(
role: str,
parts: Iterable[ChatCompletionContentPartParam],
mm_tracker: BaseMultiModalItemTracker,
*,
wrap_dicts: bool,
interleave_strings: bool,
) -> list[ConversationMessage]
Source code in vllm/entrypoints/chat_utils.py
_postprocess_messages ¶
_postprocess_messages(
messages: list[ConversationMessage],
) -> None
Source code in vllm/entrypoints/chat_utils.py
_resolve_chat_template_content_format ¶
_resolve_chat_template_content_format(
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
tokenizer: AnyTokenizer,
*,
model_config: ModelConfig,
) -> _ChatTemplateContentFormat
Source code in vllm/entrypoints/chat_utils.py
_try_extract_ast ¶
Source code in vllm/entrypoints/chat_utils.py
apply_hf_chat_template ¶
apply_hf_chat_template(
tokenizer: Union[
PreTrainedTokenizer, PreTrainedTokenizerFast
],
conversation: list[ConversationMessage],
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
*,
model_config: ModelConfig,
tokenize: bool = False,
**kwargs: Any,
) -> str
Source code in vllm/entrypoints/chat_utils.py
apply_mistral_chat_template ¶
apply_mistral_chat_template(
tokenizer: MistralTokenizer,
messages: list[ChatCompletionMessageParam],
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
**kwargs: Any,
) -> list[int]
Source code in vllm/entrypoints/chat_utils.py
get_history_tool_calls_cnt ¶
get_history_tool_calls_cnt(
conversation: list[ConversationMessage],
)
Source code in vllm/entrypoints/chat_utils.py
load_chat_template ¶
parse_chat_messages ¶
parse_chat_messages(
messages: list[ChatCompletionMessageParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
content_format: _ChatTemplateContentFormat,
) -> tuple[
list[ConversationMessage], Optional[MultiModalDataDict]
]
Source code in vllm/entrypoints/chat_utils.py
parse_chat_messages_futures ¶
parse_chat_messages_futures(
messages: list[ChatCompletionMessageParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
content_format: _ChatTemplateContentFormat,
) -> tuple[
list[ConversationMessage],
Awaitable[Optional[MultiModalDataDict]],
]
Source code in vllm/entrypoints/chat_utils.py
resolve_chat_template_content_format ¶
resolve_chat_template_content_format(
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
given_format: ChatTemplateContentFormatOption,
tokenizer: AnyTokenizer,
*,
model_config: ModelConfig,
) -> _ChatTemplateContentFormat
Source code in vllm/entrypoints/chat_utils.py
resolve_hf_chat_template ¶
resolve_hf_chat_template(
tokenizer: Union[
PreTrainedTokenizer, PreTrainedTokenizerFast
],
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
*,
model_config: ModelConfig,
) -> Optional[str]
Source code in vllm/entrypoints/chat_utils.py
resolve_mistral_chat_template ¶
Source code in vllm/entrypoints/chat_utils.py
validate_chat_template ¶
Raises if the provided chat template appears invalid.