Skip to content

vllm.entrypoints.openai.serving_engine

AnyRequest module-attribute

ChatLikeRequest module-attribute

ClassificationServeContext module-attribute

ClassificationServeContext = ServeContext[
    ClassificationRequest
]

RequestPrompt module-attribute

RequestPrompt = Union[
    list[int], str, TextTokensPrompt, EmbedsPrompt
]

RequestT module-attribute

RequestT = TypeVar('RequestT', bound=AnyRequest)

SpeechToTextRequest module-attribute

SpeechToTextRequest = Union[
    TranscriptionRequest, TranslationRequest
]

logger module-attribute

logger = init_logger(__name__)

EmbeddingServeContext

Bases: ServeContext[EmbeddingRequest]

Source code in vllm/entrypoints/openai/serving_engine.py
class EmbeddingServeContext(ServeContext[EmbeddingRequest]):
    chat_template: Optional[str] = None
    chat_template_content_format: ChatTemplateContentFormatOption

chat_template class-attribute instance-attribute

chat_template: Optional[str] = None

chat_template_content_format instance-attribute

chat_template_content_format: (
    ChatTemplateContentFormatOption
)

EmbedsPrompt

Bases: TypedDict

Source code in vllm/entrypoints/openai/serving_engine.py
class EmbedsPrompt(TypedDict):
    prompt_embeds: torch.Tensor

prompt_embeds instance-attribute

prompt_embeds: Tensor

OpenAIServing

Source code in vllm/entrypoints/openai/serving_engine.py
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
class OpenAIServing:
    request_id_prefix: ClassVar[str] = """
    A short string prepended to every request’s ID (e.g. "embd", "classify")
    so you can easily tell “this ID came from Embedding vs Classification.”
    """

    def __init__(
        self,
        engine_client: EngineClient,
        model_config: ModelConfig,
        models: OpenAIServingModels,
        *,
        request_logger: Optional[RequestLogger],
        return_tokens_as_token_ids: bool = False,
        enable_force_include_usage: bool = False,
    ):
        super().__init__()

        self.engine_client = engine_client
        self.model_config = model_config
        self.max_model_len = model_config.max_model_len

        self.models = models

        self.request_logger = request_logger
        self.return_tokens_as_token_ids = return_tokens_as_token_ids
        self.enable_force_include_usage = enable_force_include_usage

        self._tokenizer_executor = ThreadPoolExecutor(max_workers=1)

        self._async_tokenizer_pool: dict[AnyTokenizer,
                                         AsyncMicrobatchTokenizer] = {}

    def _get_async_tokenizer(self, tokenizer) -> AsyncMicrobatchTokenizer:
        """
        Return (and cache) an `AsyncMicrobatchTokenizer` bound to the
        given tokenizer.
        """
        async_tokenizer = self._async_tokenizer_pool.get(tokenizer)
        if async_tokenizer is None:
            async_tokenizer = AsyncMicrobatchTokenizer(tokenizer)
            self._async_tokenizer_pool[tokenizer] = async_tokenizer
        return async_tokenizer

    async def _preprocess(
        self,
        ctx: ServeContext,
    ) -> Optional[ErrorResponse]:
        """
        Default preprocessing hook. Subclasses may override
        to prepare `ctx` (classification, embedding, etc.).
        """
        return None

    def _build_response(
        self,
        ctx: ServeContext,
    ) -> Union[AnyResponse, ErrorResponse]:
        """
        Default response builder. Subclass may override this method
        to return the appropriate response object.
        """
        return self.create_error_response("unimplemented endpoint")

    async def handle(
        self,
        ctx: ServeContext,
    ) -> Union[AnyResponse, ErrorResponse]:
        generation: AsyncGenerator[Union[AnyResponse, ErrorResponse], None]
        generation = self._pipeline(ctx)

        async for response in generation:
            return response

        return self.create_error_response("No response yielded from pipeline")

    async def _pipeline(
        self,
        ctx: ServeContext,
    ) -> AsyncGenerator[Union[AnyResponse, ErrorResponse], None]:
        """Execute the request processing pipeline yielding responses."""
        if error := await self._check_model(ctx.request):
            yield error
        if error := self._validate_request(ctx):
            yield error

        preprocess_ret = await self._preprocess(ctx)
        if isinstance(preprocess_ret, ErrorResponse):
            yield preprocess_ret

        generators_ret = await self._prepare_generators(ctx)
        if isinstance(generators_ret, ErrorResponse):
            yield generators_ret

        collect_ret = await self._collect_batch(ctx)
        if isinstance(collect_ret, ErrorResponse):
            yield collect_ret

        yield self._build_response(ctx)

    def _validate_request(self, ctx: ServeContext) -> Optional[ErrorResponse]:
        truncate_prompt_tokens = getattr(ctx.request, "truncate_prompt_tokens",
                                         None)

        if truncate_prompt_tokens is not None:
            if truncate_prompt_tokens <= self.max_model_len:
                ctx.truncate_prompt_tokens = truncate_prompt_tokens
            else:
                return self.create_error_response(
                    "truncate_prompt_tokens value is "
                    "greater than max_model_len."
                    " Please, select a smaller truncation size.")
        return None

    def _create_pooling_params(
        self,
        ctx: ServeContext,
    ) -> Union[PoolingParams, ErrorResponse]:
        if not hasattr(ctx.request, "to_pooling_params"):
            return self.create_error_response(
                "Request type does not support pooling parameters")

        return ctx.request.to_pooling_params()

    async def _prepare_generators(
        self,
        ctx: ServeContext,
    ) -> Optional[ErrorResponse]:
        """Schedule the request and get the result generator."""
        generators: list[AsyncGenerator[Union[RequestOutput,
                                              PoolingRequestOutput],
                                        None]] = []

        try:
            trace_headers = (None if ctx.raw_request is None else await
                             self._get_trace_headers(ctx.raw_request.headers))

            pooling_params = self._create_pooling_params(ctx)
            if isinstance(pooling_params, ErrorResponse):
                return pooling_params

            if ctx.engine_prompts is None:
                return self.create_error_response(
                    "Engine prompts not available")

            for i, engine_prompt in enumerate(ctx.engine_prompts):
                request_id_item = f"{ctx.request_id}-{i}"

                if ctx.request_prompts is None:
                    return self.create_error_response(
                        "Request prompts not available")

                self._log_inputs(request_id_item,
                                 ctx.request_prompts[i],
                                 params=pooling_params,
                                 lora_request=ctx.lora_request)

                # Mypy has an existing bug related to inferring the variance of
                # TypedDicts with `builtins.enumerate`:
                # https://github.com/python/mypy/issues/8586#issuecomment-2867698435
                engine_prompt = cast(
                    Union[EngineTokensPrompt, EngineEmbedsPrompt],
                    engine_prompt)
                generator = self.engine_client.encode(
                    engine_prompt,
                    pooling_params,
                    request_id_item,
                    lora_request=ctx.lora_request,
                    trace_headers=trace_headers,
                    priority=getattr(ctx.request, "priority", 0),
                )

                generators.append(generator)

            ctx.result_generator = merge_async_iterators(*generators)

            return None

        except Exception as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

    async def _collect_batch(
        self,
        ctx: ServeContext,
    ) -> Optional[ErrorResponse]:
        """Collect batch results from the result generator."""
        try:
            if ctx.engine_prompts is None:
                return self.create_error_response(
                    "Engine prompts not available")

            num_prompts = len(ctx.engine_prompts)
            final_res_batch: list[Optional[Union[RequestOutput,
                                                 PoolingRequestOutput]]]
            final_res_batch = [None] * num_prompts

            if ctx.result_generator is None:
                return self.create_error_response(
                    "Result generator not available")

            async for i, res in ctx.result_generator:
                final_res_batch[i] = res

            if None in final_res_batch:
                return self.create_error_response(
                    "Failed to generate results for all prompts")

            ctx.final_res_batch = [
                res for res in final_res_batch if res is not None
            ]

            return None

        except Exception as e:
            return self.create_error_response(str(e))

    def create_error_response(
            self,
            message: str,
            err_type: str = "BadRequestError",
            status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
        return ErrorResponse(error=ErrorInfo(
            message=message, type=err_type, code=status_code.value))

    def create_streaming_error_response(
            self,
            message: str,
            err_type: str = "BadRequestError",
            status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
        json_str = json.dumps(
            self.create_error_response(message=message,
                                       err_type=err_type,
                                       status_code=status_code).model_dump())
        return json_str

    async def _check_model(
        self,
        request: AnyRequest,
    ) -> Optional[ErrorResponse]:

        error_response = None

        if self._is_model_supported(request.model):
            return None
        if request.model in self.models.lora_requests:
            return None
        if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING and request.model and (
                load_result := await self.models.resolve_lora(request.model)):
            if isinstance(load_result, LoRARequest):
                return None
            if isinstance(load_result, ErrorResponse) and \
                load_result.error.code == HTTPStatus.BAD_REQUEST.value:
                error_response = load_result

        return error_response or self.create_error_response(
            message=f"The model `{request.model}` does not exist.",
            err_type="NotFoundError",
            status_code=HTTPStatus.NOT_FOUND)

    def _get_active_default_mm_loras(
            self, request: AnyRequest) -> Optional[LoRARequest]:
        """Determine if there are any active default multimodal loras."""
        # TODO: Currently this is only enabled for chat completions
        # to be better aligned with only being enabled for .generate
        # when run offline. It would be nice to support additional
        # tasks types in the future.
        message_types = self._get_message_types(request)
        default_mm_loras = set()

        for lora in self.models.lora_requests.values():
            # Best effort match for default multimodal lora adapters;
            # There is probably a better way to do this, but currently
            # this matches against the set of 'types' in any content lists
            # up until '_', e.g., to match audio_url -> audio
            if lora.lora_name in message_types:
                default_mm_loras.add(lora)

        # Currently only support default modality specific loras if
        # we have exactly one lora matched on the request.
        if len(default_mm_loras) == 1:
            return default_mm_loras.pop()
        return None

    def _maybe_get_adapters(
        self,
        request: AnyRequest,
        supports_default_mm_loras: bool = False,
    ) -> Optional[LoRARequest]:

        if request.model in self.models.lora_requests:
            return self.models.lora_requests[request.model]

        # Currently only support default modality specific loras
        # if we have exactly one lora matched on the request.
        if supports_default_mm_loras:
            default_mm_lora = self._get_active_default_mm_loras(request)
            if default_mm_lora is not None:
                return default_mm_lora

        if self._is_model_supported(request.model):
            return None

        # if _check_model has been called earlier, this will be unreachable
        raise ValueError(f"The model `{request.model}` does not exist.")

    def _get_message_types(self, request: AnyRequest) -> set[str]:
        """Retrieve the set of types from message content dicts up
        until `_`; we use this to match potential multimodal data
        with default per modality loras.
        """
        message_types: set[str] = set()

        if not hasattr(request, "messages"):
            return message_types

        for message in request.messages:
            if (isinstance(message, dict) and "content" in message
                    and isinstance(message["content"], list)):
                for content_dict in message["content"]:
                    if "type" in content_dict:
                        message_types.add(content_dict["type"].split("_")[0])
        return message_types

    async def _normalize_prompt_text_to_input(
        self,
        request: AnyRequest,
        tokenizer: AnyTokenizer,
        prompt: str,
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]],
        add_special_tokens: bool,
    ) -> TextTokensPrompt:
        async_tokenizer = self._get_async_tokenizer(tokenizer)

        if (self.model_config.encoder_config is not None
                and self.model_config.encoder_config.get(
                    "do_lower_case", False)):
            prompt = prompt.lower()

        if truncate_prompt_tokens is None:
            encoded = await async_tokenizer(
                prompt, add_special_tokens=add_special_tokens)
        elif truncate_prompt_tokens < 0:
            # Negative means we cap at the model's max length
            encoded = await async_tokenizer(
                prompt,
                add_special_tokens=add_special_tokens,
                truncation=True,
                max_length=self.max_model_len)
        else:
            encoded = await async_tokenizer(
                prompt,
                add_special_tokens=add_special_tokens,
                truncation=True,
                max_length=truncate_prompt_tokens)

        input_ids = encoded.input_ids
        input_text = prompt

        return self._validate_input(request, input_ids, input_text)

    async def _normalize_prompt_tokens_to_input(
        self,
        request: AnyRequest,
        tokenizer: AnyTokenizer,
        prompt_ids: list[int],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]],
    ) -> TextTokensPrompt:
        async_tokenizer = self._get_async_tokenizer(tokenizer)

        if truncate_prompt_tokens is None:
            input_ids = prompt_ids
        elif truncate_prompt_tokens < 0:
            input_ids = prompt_ids[-self.max_model_len:]
        else:
            input_ids = prompt_ids[-truncate_prompt_tokens:]

        input_text = await async_tokenizer.decode(input_ids)

        return self._validate_input(request, input_ids, input_text)

    def _validate_input(
        self,
        request: AnyRequest,
        input_ids: list[int],
        input_text: str,
    ) -> TextTokensPrompt:
        token_num = len(input_ids)

        # Note: EmbeddingRequest, ClassificationRequest,
        # and ScoreRequest doesn't have max_tokens
        if isinstance(request,
                      (EmbeddingChatRequest, EmbeddingCompletionRequest,
                       ScoreRequest, RerankRequest, ClassificationRequest)):

            # Note: input length can be up to the entire model context length
            # since these requests don't generate tokens.
            if token_num > self.max_model_len:
                operations: dict[type[AnyRequest], str] = {
                    ScoreRequest: "score",
                    ClassificationRequest: "classification"
                }
                operation = operations.get(type(request),
                                           "embedding generation")
                raise ValueError(
                    f"This model's maximum context length is "
                    f"{self.max_model_len} tokens. However, you requested "
                    f"{token_num} tokens in the input for {operation}. "
                    f"Please reduce the length of the input.")
            return TextTokensPrompt(prompt=input_text,
                                    prompt_token_ids=input_ids)

        # Note: TokenizeRequest and DetokenizeRequest doesn't have max_tokens
        # and does not require model context length validation
        if isinstance(request, (TokenizeCompletionRequest, TokenizeChatRequest,
                                DetokenizeRequest)):
            return TextTokensPrompt(prompt=input_text,
                                    prompt_token_ids=input_ids)

        # chat completion endpoint supports max_completion_tokens
        if isinstance(request, ChatCompletionRequest):
            # TODO(#9845): remove max_tokens when field dropped from OpenAI API
            max_tokens = request.max_completion_tokens or request.max_tokens
        else:
            max_tokens = getattr(request, "max_tokens", None)

        # Note: input length can be up to model context length - 1 for
        # completion-like requests.
        if token_num >= self.max_model_len:
            raise ValueError(
                f"This model's maximum context length is "
                f"{self.max_model_len} tokens. However, your request has "
                f"{token_num} input tokens. Please reduce the length of "
                "the input messages.")

        if max_tokens is not None and \
            token_num + max_tokens > self.max_model_len:
            raise ValueError(
                "'max_tokens' or 'max_completion_tokens' is too large: "
                f"{max_tokens}. This model's maximum context length is "
                f"{self.max_model_len} tokens and your request has "
                f"{token_num} input tokens ({max_tokens} > {self.max_model_len}"
                f" - {token_num}).")

        return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids)

    async def _tokenize_prompt_input_async(
        self,
        request: AnyRequest,
        tokenizer: AnyTokenizer,
        prompt_input: Union[str, list[int]],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
        add_special_tokens: bool = True,
    ) -> TextTokensPrompt:
        """
        A simpler implementation of
        [`_tokenize_prompt_input_or_inputs`][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs]
        that assumes single input.
        """
        async for result in self._tokenize_prompt_inputs_async(
                request,
                tokenizer,
            [prompt_input],
                truncate_prompt_tokens=truncate_prompt_tokens,
                add_special_tokens=add_special_tokens,
        ):
            return result
        raise ValueError("No results yielded from tokenization")

    async def _tokenize_prompt_inputs_async(
        self,
        request: AnyRequest,
        tokenizer: AnyTokenizer,
        prompt_inputs: Iterable[Union[str, list[int]]],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
        add_special_tokens: bool = True,
    ) -> AsyncGenerator[TextTokensPrompt, None]:
        """
        A simpler implementation of
        [`_tokenize_prompt_input_or_inputs`][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs]
        that assumes multiple inputs.
        """
        for text in prompt_inputs:
            if isinstance(text, str):
                yield await self._normalize_prompt_text_to_input(
                    request,
                    tokenizer,
                    prompt=text,
                    truncate_prompt_tokens=truncate_prompt_tokens,
                    add_special_tokens=add_special_tokens,
                )
            else:
                yield await self._normalize_prompt_tokens_to_input(
                    request,
                    tokenizer,
                    prompt_ids=text,
                    truncate_prompt_tokens=truncate_prompt_tokens,
                )

    async def _tokenize_prompt_input_or_inputs_async(
        self,
        request: AnyRequest,
        tokenizer: AnyTokenizer,
        input_or_inputs: Optional[Union[str, list[str], list[int],
                                        list[list[int]]]],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
        add_special_tokens: bool = True,
    ) -> tuple[list[TextTokensPrompt], list[EmbedsPrompt]]:
        """
        Tokenize/detokenize depending on the input format.

        According to `OpenAI API <https://platform.openai.com/docs/api-reference/embeddings/create>`_
        , each input can be a string or array of tokens. Note that each request
        can pass one or more inputs.
        """
        inputs_embeds = list[EmbedsPrompt]()
        inputs_text = list[TextTokensPrompt]()

        if (isinstance(request, CompletionRequest)
                and request.prompt_embeds is not None):
            inputs_embeds.extend(
                self._load_prompt_embeds(request.prompt_embeds,
                                         truncate_prompt_tokens))

        # Empty prompts are okay as long as there are prompt embeddings
        if input_or_inputs is None or (inputs_embeds
                                       and input_or_inputs == ""):
            return [], inputs_embeds

        # Although our type checking is based on mypy,
        # VSCode Pyright extension should still work properly
        # "is False" is required for Pyright to perform type narrowing
        # See: https://github.com/microsoft/pyright/issues/7672

        # Parse and batch the input prompts
        batch_inputs = parse_and_batch_prompt(input_or_inputs)

        # Process each input in the batch concurrently
        tasks = []
        for prompt_input in batch_inputs:
            if prompt_input["is_tokens"] is False:
                task = self._normalize_prompt_text_to_input(
                    request,
                    tokenizer,
                    prompt_input["content"],
                    truncate_prompt_tokens=truncate_prompt_tokens,
                    add_special_tokens=add_special_tokens)
            else:
                task = self._normalize_prompt_tokens_to_input(
                    request,
                    tokenizer,
                    prompt_input["content"],
                    truncate_prompt_tokens=truncate_prompt_tokens)
            tasks.append(task)

        # Wait for all tokenization tasks to complete
        results = await asyncio.gather(*tasks)
        inputs_text.extend(results)

        return inputs_text, inputs_embeds

    @overload
    async def _preprocess_completion(
        self,
        request: Union[DetokenizeRequest, EmbeddingCompletionRequest,
                       RerankRequest, ClassificationRequest, ScoreRequest,
                       TokenizeCompletionRequest],
        tokenizer: AnyTokenizer,
        input_or_inputs: Union[str, list[str], list[int], list[list[int]]],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = ...,
        add_special_tokens: bool = ...,
    ) -> tuple[list[TextTokensPrompt], list[EngineTokensPrompt]]:
        ...

    @overload
    async def _preprocess_completion(
        self,
        request: CompletionRequest,
        tokenizer: AnyTokenizer,
        input_or_inputs: Optional[Union[str, list[str], list[int],
                                        list[list[int]]]],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = ...,
        add_special_tokens: bool = ...,
    ) -> tuple[list[Union[TextTokensPrompt, EmbedsPrompt]], list[Union[
            EngineTokensPrompt, EngineEmbedsPrompt]]]:
        ...

    async def _preprocess_completion(
        self,
        request: CompletionLikeRequest,
        tokenizer: AnyTokenizer,
        input_or_inputs: Optional[Union[str, list[str], list[int],
                                        list[list[int]]]],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
        add_special_tokens: bool = True,
    ) -> tuple[Union[list[TextTokensPrompt], list[Union[
            TextTokensPrompt, EmbedsPrompt]]], Union[
                list[EngineTokensPrompt], list[Union[EngineTokensPrompt,
                                                     EngineEmbedsPrompt]]]]:
        if not isinstance(request,
                          CompletionRequest) and input_or_inputs is None:
            raise ValueError(
                "Prompt embeds with non-completion requests is not"
                " currently supported.")

        (request_prompts_text, request_prompts_embeds
         ) = await self._tokenize_prompt_input_or_inputs_async(
             request,
             tokenizer,
             input_or_inputs,
             truncate_prompt_tokens=truncate_prompt_tokens,
             add_special_tokens=add_special_tokens,
         )

        engine_prompts_text = [
            EngineTokensPrompt(
                prompt_token_ids=request_prompt_text["prompt_token_ids"])
            for request_prompt_text in request_prompts_text
        ]
        cache_salt = request.cache_salt if (
            hasattr(request, "cache_salt")
            and request.cache_salt is not None) else None
        if cache_salt:
            for prompt_text in engine_prompts_text:
                prompt_text["cache_salt"] = cache_salt

        # This check is equivalent to simply checking if
        # `request_prompts_embeds` is empty, but it's difficult to propagate
        # overloads to the private helper functions to enable this check.
        # This overload is needed because only TextPrompts are allowed for
        # non-completion requests and if we don't add the overload here,
        # everywhere this function is used outside of serving_completion will
        # need logic asserting that only text prompts are in the request.
        if not isinstance(request,
                          CompletionRequest) and input_or_inputs is not None:
            return request_prompts_text, engine_prompts_text

        engine_prompts_embeds = [
            EngineEmbedsPrompt(
                prompt_embeds=request_prompt_embeds["prompt_embeds"])
            for request_prompt_embeds in request_prompts_embeds
        ]
        if cache_salt:
            for prompt_embed in engine_prompts_embeds:
                prompt_embed["cache_salt"] = cache_salt

        request_prompts = request_prompts_embeds + request_prompts_text
        engine_prompts = engine_prompts_embeds + engine_prompts_text
        return request_prompts, engine_prompts

    async def _preprocess_chat(
        self,
        request: Union[ChatLikeRequest, ResponsesRequest],
        tokenizer: AnyTokenizer,
        messages: list[ChatCompletionMessageParam],
        chat_template: Optional[str],
        chat_template_content_format: ChatTemplateContentFormatOption,
        add_generation_prompt: bool = True,
        continue_final_message: bool = False,
        tool_dicts: Optional[list[dict[str, Any]]] = None,
        documents: Optional[list[dict[str, str]]] = None,
        chat_template_kwargs: Optional[dict[str, Any]] = None,
        tool_parser: Optional[Callable[[AnyTokenizer], ToolParser]] = None,
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
        add_special_tokens: bool = False,
    ) -> tuple[list[ConversationMessage], Sequence[RequestPrompt],
               list[EngineTokensPrompt]]:
        model_config = self.model_config

        resolved_content_format = resolve_chat_template_content_format(
            chat_template,
            tool_dicts,
            chat_template_content_format,
            tokenizer,
            model_config=model_config,
        )
        conversation, mm_data_future = parse_chat_messages_futures(
            messages,
            model_config,
            tokenizer,
            content_format=resolved_content_format,
        )

        _chat_template_kwargs: dict[str, Any] = dict(
            chat_template=chat_template,
            add_generation_prompt=add_generation_prompt,
            continue_final_message=continue_final_message,
            tools=tool_dicts,
            documents=documents,
        )
        _chat_template_kwargs.update(chat_template_kwargs or {})

        request_prompt: Union[str, list[int]]

        if tokenizer is None:
            request_prompt = "placeholder"
        elif isinstance(tokenizer, MistralTokenizer):
            request_prompt = apply_mistral_chat_template(
                tokenizer,
                messages=messages,
                **_chat_template_kwargs,
            )
        else:
            request_prompt = apply_hf_chat_template(
                tokenizer=tokenizer,
                conversation=conversation,
                model_config=model_config,
                **_chat_template_kwargs,
            )

        mm_data = await mm_data_future

        # tool parsing is done only if a tool_parser has been set and if
        # tool_choice is not "none" (if tool_choice is "none" but a tool_parser
        # is set, we want to prevent parsing a tool_call hallucinated by the LLM
        should_parse_tools = tool_parser is not None and (hasattr(
            request, "tool_choice") and request.tool_choice != "none")

        if should_parse_tools:
            if not isinstance(request, ChatCompletionRequest):
                msg = "Tool usage is only supported for Chat Completions API"
                raise NotImplementedError(msg)

            request = tool_parser(tokenizer).adjust_request(  # type: ignore
                request=request)

        if tokenizer is None:
            assert isinstance(request_prompt, str), (
                "Prompt has to be a string", \
                "when the tokenizer is not initialised"
            )
            prompt_inputs = TextTokensPrompt(prompt=request_prompt,
                                             prompt_token_ids=[1])
        elif isinstance(request_prompt, str):
            prompt_inputs = await self._tokenize_prompt_input_async(
                request,
                tokenizer,
                request_prompt,
                truncate_prompt_tokens=truncate_prompt_tokens,
                add_special_tokens=add_special_tokens,
            )
        else:
            # For MistralTokenizer
            assert is_list_of(request_prompt, int), (
                "Prompt has to be either a string or a list of token ids")
            prompt_inputs = TextTokensPrompt(
                prompt=tokenizer.decode(request_prompt),
                prompt_token_ids=request_prompt)

        engine_prompt = EngineTokensPrompt(
            prompt_token_ids=prompt_inputs["prompt_token_ids"])
        if mm_data is not None:
            engine_prompt["multi_modal_data"] = mm_data
        if request.mm_processor_kwargs is not None:
            engine_prompt["mm_processor_kwargs"] = request.mm_processor_kwargs

        if hasattr(request, "cache_salt") and request.cache_salt is not None:
            engine_prompt["cache_salt"] = request.cache_salt

        return conversation, [request_prompt], [engine_prompt]

    async def _generate_with_builtin_tools(
        self,
        request_id: str,
        request_prompt: RequestPrompt,
        engine_prompt: EngineTokensPrompt,
        sampling_params: SamplingParams,
        context: ConversationContext,
        lora_request: Optional[LoRARequest] = None,
        priority: int = 0,
        **kwargs,
    ):
        orig_priority = priority
        while True:
            self._log_inputs(
                request_id,
                request_prompt,
                params=sampling_params,
                lora_request=lora_request,
            )
            generator = self.engine_client.generate(
                engine_prompt,
                sampling_params,
                request_id,
                lora_request=lora_request,
                priority=priority,
                **kwargs,
            )
            async for res in generator:
                context.append_output(res)
                # NOTE(woosuk): The stop condition is handled by the engine.
                yield context

            if not context.need_builtin_tool_call():
                # The model did not ask for a tool call, so we're done.
                break

            # Call the tool and update the context with the result.
            tool_output = await context.call_tool()
            context.append_output(tool_output)

            # TODO: uncomment this and enable tool output streaming
            # yield context

            # Create inputs for the next turn.
            # Render the next prompt token ids.
            prompt_token_ids = context.render_for_completion()
            engine_prompt = EngineTokensPrompt(
                prompt_token_ids=prompt_token_ids)
            request_prompt = prompt_token_ids
            # Update the sampling params.
            sampling_params.max_tokens = (self.max_model_len -
                                          len(prompt_token_ids))
            # OPTIMIZATION
            priority = orig_priority - 1

    @staticmethod
    def _load_prompt_embeds(
        prompt_embeds: Optional[Union[bytes, list[bytes]]],
        truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
    ) -> list[EmbedsPrompt]:

        def _load_and_validate_embed(embed: bytes) -> EmbedsPrompt:
            tensor = torch.load(io.BytesIO(
                pybase64.b64decode(embed, validate=True)),
                                weights_only=True,
                                map_location=torch.device("cpu"))
            assert isinstance(tensor, torch.Tensor) and tensor.dtype in (
                torch.float32,
                torch.bfloat16,
                torch.float16,
            )
            tensor = tensor.to_dense()
            if tensor.dim() > 2:
                tensor = tensor.squeeze(0)
                assert tensor.dim() == 2
            if truncate_prompt_tokens is not None:
                tensor = tensor[-truncate_prompt_tokens:]
            return {"prompt_embeds": tensor}

        if prompt_embeds:
            if isinstance(prompt_embeds, list):
                return [
                    _load_and_validate_embed(embed) for embed in prompt_embeds
                ]
            else:
                return [_load_and_validate_embed(prompt_embeds)]
        else:
            return []

    def _log_inputs(
        self,
        request_id: str,
        inputs: RequestPrompt,
        params: Optional[Union[SamplingParams, PoolingParams,
                               BeamSearchParams]],
        lora_request: Optional[LoRARequest],
    ) -> None:
        if self.request_logger is None:
            return
        prompt, prompt_token_ids, prompt_embeds = None, None, None
        if isinstance(inputs, str):
            prompt = inputs
        elif isinstance(inputs, list):
            prompt_token_ids = inputs
        elif 'prompt_embeds' in inputs:
            prompt_embeds = inputs.get("prompt_embeds")
        else:
            prompt = inputs["prompt"]
            prompt_token_ids = inputs["prompt_token_ids"]

        self.request_logger.log_inputs(
            request_id,
            prompt,
            prompt_token_ids,
            prompt_embeds,
            params=params,
            lora_request=lora_request,
        )

    async def _get_trace_headers(
        self,
        headers: Headers,
    ) -> Optional[Mapping[str, str]]:
        is_tracing_enabled = await self.engine_client.is_tracing_enabled()

        if is_tracing_enabled:
            return extract_trace_headers(headers)

        if contains_trace_headers(headers):
            log_tracing_disabled_warning()

        return None

    @staticmethod
    def _base_request_id(raw_request: Optional[Request],
                         default: Optional[str] = None) -> Optional[str]:
        """Pulls the request id to use from a header, if provided"""
        default = default or random_uuid()
        if raw_request is None:
            return default

        return raw_request.headers.get("X-Request-Id", default)

    @staticmethod
    def _get_decoded_token(logprob: Logprob,
                           token_id: int,
                           tokenizer: AnyTokenizer,
                           return_as_token_id: bool = False) -> str:
        if return_as_token_id:
            return f"token_id:{token_id}"

        if logprob.decoded_token is not None:
            return logprob.decoded_token
        return tokenizer.decode(token_id)

    def _is_model_supported(self, model_name: Optional[str]) -> bool:
        if not model_name:
            return True
        return self.models.is_base_model(model_name)

    def _get_model_name(self,
                        model_name: Optional[str] = None,
                        lora_request: Optional[LoRARequest] = None) -> str:
        if lora_request:
            return lora_request.lora_name
        if not model_name:
            return self.models.base_model_paths[0].name
        return model_name

_async_tokenizer_pool instance-attribute

_async_tokenizer_pool: dict[
    AnyTokenizer, AsyncMicrobatchTokenizer
] = {}

_tokenizer_executor instance-attribute

_tokenizer_executor = ThreadPoolExecutor(max_workers=1)

enable_force_include_usage instance-attribute

enable_force_include_usage = enable_force_include_usage

engine_client instance-attribute

engine_client = engine_client

max_model_len instance-attribute

max_model_len = max_model_len

model_config instance-attribute

model_config = model_config

models instance-attribute

models = models

request_id_prefix class-attribute

request_id_prefix: str = '\n    A short string prepended to every request’s ID (e.g. "embd", "classify")\n    so you can easily tell “this ID came from Embedding vs Classification.”\n    '

request_logger instance-attribute

request_logger = request_logger

return_tokens_as_token_ids instance-attribute

return_tokens_as_token_ids = return_tokens_as_token_ids

__init__

__init__(
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    return_tokens_as_token_ids: bool = False,
    enable_force_include_usage: bool = False,
)
Source code in vllm/entrypoints/openai/serving_engine.py
def __init__(
    self,
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    return_tokens_as_token_ids: bool = False,
    enable_force_include_usage: bool = False,
):
    super().__init__()

    self.engine_client = engine_client
    self.model_config = model_config
    self.max_model_len = model_config.max_model_len

    self.models = models

    self.request_logger = request_logger
    self.return_tokens_as_token_ids = return_tokens_as_token_ids
    self.enable_force_include_usage = enable_force_include_usage

    self._tokenizer_executor = ThreadPoolExecutor(max_workers=1)

    self._async_tokenizer_pool: dict[AnyTokenizer,
                                     AsyncMicrobatchTokenizer] = {}

_base_request_id staticmethod

_base_request_id(
    raw_request: Optional[Request],
    default: Optional[str] = None,
) -> Optional[str]

Pulls the request id to use from a header, if provided

Source code in vllm/entrypoints/openai/serving_engine.py
@staticmethod
def _base_request_id(raw_request: Optional[Request],
                     default: Optional[str] = None) -> Optional[str]:
    """Pulls the request id to use from a header, if provided"""
    default = default or random_uuid()
    if raw_request is None:
        return default

    return raw_request.headers.get("X-Request-Id", default)

_build_response

_build_response(
    ctx: ServeContext,
) -> Union[AnyResponse, ErrorResponse]

Default response builder. Subclass may override this method to return the appropriate response object.

Source code in vllm/entrypoints/openai/serving_engine.py
def _build_response(
    self,
    ctx: ServeContext,
) -> Union[AnyResponse, ErrorResponse]:
    """
    Default response builder. Subclass may override this method
    to return the appropriate response object.
    """
    return self.create_error_response("unimplemented endpoint")

_check_model async

_check_model(
    request: AnyRequest,
) -> Optional[ErrorResponse]
Source code in vllm/entrypoints/openai/serving_engine.py
async def _check_model(
    self,
    request: AnyRequest,
) -> Optional[ErrorResponse]:

    error_response = None

    if self._is_model_supported(request.model):
        return None
    if request.model in self.models.lora_requests:
        return None
    if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING and request.model and (
            load_result := await self.models.resolve_lora(request.model)):
        if isinstance(load_result, LoRARequest):
            return None
        if isinstance(load_result, ErrorResponse) and \
            load_result.error.code == HTTPStatus.BAD_REQUEST.value:
            error_response = load_result

    return error_response or self.create_error_response(
        message=f"The model `{request.model}` does not exist.",
        err_type="NotFoundError",
        status_code=HTTPStatus.NOT_FOUND)

_collect_batch async

_collect_batch(
    ctx: ServeContext,
) -> Optional[ErrorResponse]

Collect batch results from the result generator.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _collect_batch(
    self,
    ctx: ServeContext,
) -> Optional[ErrorResponse]:
    """Collect batch results from the result generator."""
    try:
        if ctx.engine_prompts is None:
            return self.create_error_response(
                "Engine prompts not available")

        num_prompts = len(ctx.engine_prompts)
        final_res_batch: list[Optional[Union[RequestOutput,
                                             PoolingRequestOutput]]]
        final_res_batch = [None] * num_prompts

        if ctx.result_generator is None:
            return self.create_error_response(
                "Result generator not available")

        async for i, res in ctx.result_generator:
            final_res_batch[i] = res

        if None in final_res_batch:
            return self.create_error_response(
                "Failed to generate results for all prompts")

        ctx.final_res_batch = [
            res for res in final_res_batch if res is not None
        ]

        return None

    except Exception as e:
        return self.create_error_response(str(e))

_create_pooling_params

_create_pooling_params(
    ctx: ServeContext,
) -> Union[PoolingParams, ErrorResponse]
Source code in vllm/entrypoints/openai/serving_engine.py
def _create_pooling_params(
    self,
    ctx: ServeContext,
) -> Union[PoolingParams, ErrorResponse]:
    if not hasattr(ctx.request, "to_pooling_params"):
        return self.create_error_response(
            "Request type does not support pooling parameters")

    return ctx.request.to_pooling_params()

_generate_with_builtin_tools async

_generate_with_builtin_tools(
    request_id: str,
    request_prompt: RequestPrompt,
    engine_prompt: TokensPrompt,
    sampling_params: SamplingParams,
    context: ConversationContext,
    lora_request: Optional[LoRARequest] = None,
    priority: int = 0,
    **kwargs,
)
Source code in vllm/entrypoints/openai/serving_engine.py
async def _generate_with_builtin_tools(
    self,
    request_id: str,
    request_prompt: RequestPrompt,
    engine_prompt: EngineTokensPrompt,
    sampling_params: SamplingParams,
    context: ConversationContext,
    lora_request: Optional[LoRARequest] = None,
    priority: int = 0,
    **kwargs,
):
    orig_priority = priority
    while True:
        self._log_inputs(
            request_id,
            request_prompt,
            params=sampling_params,
            lora_request=lora_request,
        )
        generator = self.engine_client.generate(
            engine_prompt,
            sampling_params,
            request_id,
            lora_request=lora_request,
            priority=priority,
            **kwargs,
        )
        async for res in generator:
            context.append_output(res)
            # NOTE(woosuk): The stop condition is handled by the engine.
            yield context

        if not context.need_builtin_tool_call():
            # The model did not ask for a tool call, so we're done.
            break

        # Call the tool and update the context with the result.
        tool_output = await context.call_tool()
        context.append_output(tool_output)

        # TODO: uncomment this and enable tool output streaming
        # yield context

        # Create inputs for the next turn.
        # Render the next prompt token ids.
        prompt_token_ids = context.render_for_completion()
        engine_prompt = EngineTokensPrompt(
            prompt_token_ids=prompt_token_ids)
        request_prompt = prompt_token_ids
        # Update the sampling params.
        sampling_params.max_tokens = (self.max_model_len -
                                      len(prompt_token_ids))
        # OPTIMIZATION
        priority = orig_priority - 1

_get_active_default_mm_loras

_get_active_default_mm_loras(
    request: AnyRequest,
) -> Optional[LoRARequest]

Determine if there are any active default multimodal loras.

Source code in vllm/entrypoints/openai/serving_engine.py
def _get_active_default_mm_loras(
        self, request: AnyRequest) -> Optional[LoRARequest]:
    """Determine if there are any active default multimodal loras."""
    # TODO: Currently this is only enabled for chat completions
    # to be better aligned with only being enabled for .generate
    # when run offline. It would be nice to support additional
    # tasks types in the future.
    message_types = self._get_message_types(request)
    default_mm_loras = set()

    for lora in self.models.lora_requests.values():
        # Best effort match for default multimodal lora adapters;
        # There is probably a better way to do this, but currently
        # this matches against the set of 'types' in any content lists
        # up until '_', e.g., to match audio_url -> audio
        if lora.lora_name in message_types:
            default_mm_loras.add(lora)

    # Currently only support default modality specific loras if
    # we have exactly one lora matched on the request.
    if len(default_mm_loras) == 1:
        return default_mm_loras.pop()
    return None

_get_async_tokenizer

_get_async_tokenizer(tokenizer) -> AsyncMicrobatchTokenizer

Return (and cache) an AsyncMicrobatchTokenizer bound to the given tokenizer.

Source code in vllm/entrypoints/openai/serving_engine.py
def _get_async_tokenizer(self, tokenizer) -> AsyncMicrobatchTokenizer:
    """
    Return (and cache) an `AsyncMicrobatchTokenizer` bound to the
    given tokenizer.
    """
    async_tokenizer = self._async_tokenizer_pool.get(tokenizer)
    if async_tokenizer is None:
        async_tokenizer = AsyncMicrobatchTokenizer(tokenizer)
        self._async_tokenizer_pool[tokenizer] = async_tokenizer
    return async_tokenizer

_get_decoded_token staticmethod

_get_decoded_token(
    logprob: Logprob,
    token_id: int,
    tokenizer: AnyTokenizer,
    return_as_token_id: bool = False,
) -> str
Source code in vllm/entrypoints/openai/serving_engine.py
@staticmethod
def _get_decoded_token(logprob: Logprob,
                       token_id: int,
                       tokenizer: AnyTokenizer,
                       return_as_token_id: bool = False) -> str:
    if return_as_token_id:
        return f"token_id:{token_id}"

    if logprob.decoded_token is not None:
        return logprob.decoded_token
    return tokenizer.decode(token_id)

_get_message_types

_get_message_types(request: AnyRequest) -> set[str]

Retrieve the set of types from message content dicts up until _; we use this to match potential multimodal data with default per modality loras.

Source code in vllm/entrypoints/openai/serving_engine.py
def _get_message_types(self, request: AnyRequest) -> set[str]:
    """Retrieve the set of types from message content dicts up
    until `_`; we use this to match potential multimodal data
    with default per modality loras.
    """
    message_types: set[str] = set()

    if not hasattr(request, "messages"):
        return message_types

    for message in request.messages:
        if (isinstance(message, dict) and "content" in message
                and isinstance(message["content"], list)):
            for content_dict in message["content"]:
                if "type" in content_dict:
                    message_types.add(content_dict["type"].split("_")[0])
    return message_types

_get_model_name

_get_model_name(
    model_name: Optional[str] = None,
    lora_request: Optional[LoRARequest] = None,
) -> str
Source code in vllm/entrypoints/openai/serving_engine.py
def _get_model_name(self,
                    model_name: Optional[str] = None,
                    lora_request: Optional[LoRARequest] = None) -> str:
    if lora_request:
        return lora_request.lora_name
    if not model_name:
        return self.models.base_model_paths[0].name
    return model_name

_get_trace_headers async

_get_trace_headers(
    headers: Headers,
) -> Optional[Mapping[str, str]]
Source code in vllm/entrypoints/openai/serving_engine.py
async def _get_trace_headers(
    self,
    headers: Headers,
) -> Optional[Mapping[str, str]]:
    is_tracing_enabled = await self.engine_client.is_tracing_enabled()

    if is_tracing_enabled:
        return extract_trace_headers(headers)

    if contains_trace_headers(headers):
        log_tracing_disabled_warning()

    return None

_is_model_supported

_is_model_supported(model_name: Optional[str]) -> bool
Source code in vllm/entrypoints/openai/serving_engine.py
def _is_model_supported(self, model_name: Optional[str]) -> bool:
    if not model_name:
        return True
    return self.models.is_base_model(model_name)

_load_prompt_embeds staticmethod

_load_prompt_embeds(
    prompt_embeds: Optional[Union[bytes, list[bytes]]],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=1)]
    ] = None,
) -> list[EmbedsPrompt]
Source code in vllm/entrypoints/openai/serving_engine.py
@staticmethod
def _load_prompt_embeds(
    prompt_embeds: Optional[Union[bytes, list[bytes]]],
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
) -> list[EmbedsPrompt]:

    def _load_and_validate_embed(embed: bytes) -> EmbedsPrompt:
        tensor = torch.load(io.BytesIO(
            pybase64.b64decode(embed, validate=True)),
                            weights_only=True,
                            map_location=torch.device("cpu"))
        assert isinstance(tensor, torch.Tensor) and tensor.dtype in (
            torch.float32,
            torch.bfloat16,
            torch.float16,
        )
        tensor = tensor.to_dense()
        if tensor.dim() > 2:
            tensor = tensor.squeeze(0)
            assert tensor.dim() == 2
        if truncate_prompt_tokens is not None:
            tensor = tensor[-truncate_prompt_tokens:]
        return {"prompt_embeds": tensor}

    if prompt_embeds:
        if isinstance(prompt_embeds, list):
            return [
                _load_and_validate_embed(embed) for embed in prompt_embeds
            ]
        else:
            return [_load_and_validate_embed(prompt_embeds)]
    else:
        return []

_log_inputs

_log_inputs(
    request_id: str,
    inputs: RequestPrompt,
    params: Optional[
        Union[
            SamplingParams, PoolingParams, BeamSearchParams
        ]
    ],
    lora_request: Optional[LoRARequest],
) -> None
Source code in vllm/entrypoints/openai/serving_engine.py
def _log_inputs(
    self,
    request_id: str,
    inputs: RequestPrompt,
    params: Optional[Union[SamplingParams, PoolingParams,
                           BeamSearchParams]],
    lora_request: Optional[LoRARequest],
) -> None:
    if self.request_logger is None:
        return
    prompt, prompt_token_ids, prompt_embeds = None, None, None
    if isinstance(inputs, str):
        prompt = inputs
    elif isinstance(inputs, list):
        prompt_token_ids = inputs
    elif 'prompt_embeds' in inputs:
        prompt_embeds = inputs.get("prompt_embeds")
    else:
        prompt = inputs["prompt"]
        prompt_token_ids = inputs["prompt_token_ids"]

    self.request_logger.log_inputs(
        request_id,
        prompt,
        prompt_token_ids,
        prompt_embeds,
        params=params,
        lora_request=lora_request,
    )

_maybe_get_adapters

_maybe_get_adapters(
    request: AnyRequest,
    supports_default_mm_loras: bool = False,
) -> Optional[LoRARequest]
Source code in vllm/entrypoints/openai/serving_engine.py
def _maybe_get_adapters(
    self,
    request: AnyRequest,
    supports_default_mm_loras: bool = False,
) -> Optional[LoRARequest]:

    if request.model in self.models.lora_requests:
        return self.models.lora_requests[request.model]

    # Currently only support default modality specific loras
    # if we have exactly one lora matched on the request.
    if supports_default_mm_loras:
        default_mm_lora = self._get_active_default_mm_loras(request)
        if default_mm_lora is not None:
            return default_mm_lora

    if self._is_model_supported(request.model):
        return None

    # if _check_model has been called earlier, this will be unreachable
    raise ValueError(f"The model `{request.model}` does not exist.")

_normalize_prompt_text_to_input async

_normalize_prompt_text_to_input(
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt: str,
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=-1)]
    ],
    add_special_tokens: bool,
) -> TextTokensPrompt
Source code in vllm/entrypoints/openai/serving_engine.py
async def _normalize_prompt_text_to_input(
    self,
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt: str,
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]],
    add_special_tokens: bool,
) -> TextTokensPrompt:
    async_tokenizer = self._get_async_tokenizer(tokenizer)

    if (self.model_config.encoder_config is not None
            and self.model_config.encoder_config.get(
                "do_lower_case", False)):
        prompt = prompt.lower()

    if truncate_prompt_tokens is None:
        encoded = await async_tokenizer(
            prompt, add_special_tokens=add_special_tokens)
    elif truncate_prompt_tokens < 0:
        # Negative means we cap at the model's max length
        encoded = await async_tokenizer(
            prompt,
            add_special_tokens=add_special_tokens,
            truncation=True,
            max_length=self.max_model_len)
    else:
        encoded = await async_tokenizer(
            prompt,
            add_special_tokens=add_special_tokens,
            truncation=True,
            max_length=truncate_prompt_tokens)

    input_ids = encoded.input_ids
    input_text = prompt

    return self._validate_input(request, input_ids, input_text)

_normalize_prompt_tokens_to_input async

_normalize_prompt_tokens_to_input(
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_ids: list[int],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=1)]
    ],
) -> TextTokensPrompt
Source code in vllm/entrypoints/openai/serving_engine.py
async def _normalize_prompt_tokens_to_input(
    self,
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_ids: list[int],
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]],
) -> TextTokensPrompt:
    async_tokenizer = self._get_async_tokenizer(tokenizer)

    if truncate_prompt_tokens is None:
        input_ids = prompt_ids
    elif truncate_prompt_tokens < 0:
        input_ids = prompt_ids[-self.max_model_len:]
    else:
        input_ids = prompt_ids[-truncate_prompt_tokens:]

    input_text = await async_tokenizer.decode(input_ids)

    return self._validate_input(request, input_ids, input_text)

_pipeline async

_pipeline(
    ctx: ServeContext,
) -> AsyncGenerator[
    Union[AnyResponse, ErrorResponse], None
]

Execute the request processing pipeline yielding responses.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _pipeline(
    self,
    ctx: ServeContext,
) -> AsyncGenerator[Union[AnyResponse, ErrorResponse], None]:
    """Execute the request processing pipeline yielding responses."""
    if error := await self._check_model(ctx.request):
        yield error
    if error := self._validate_request(ctx):
        yield error

    preprocess_ret = await self._preprocess(ctx)
    if isinstance(preprocess_ret, ErrorResponse):
        yield preprocess_ret

    generators_ret = await self._prepare_generators(ctx)
    if isinstance(generators_ret, ErrorResponse):
        yield generators_ret

    collect_ret = await self._collect_batch(ctx)
    if isinstance(collect_ret, ErrorResponse):
        yield collect_ret

    yield self._build_response(ctx)

_prepare_generators async

_prepare_generators(
    ctx: ServeContext,
) -> Optional[ErrorResponse]

Schedule the request and get the result generator.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _prepare_generators(
    self,
    ctx: ServeContext,
) -> Optional[ErrorResponse]:
    """Schedule the request and get the result generator."""
    generators: list[AsyncGenerator[Union[RequestOutput,
                                          PoolingRequestOutput],
                                    None]] = []

    try:
        trace_headers = (None if ctx.raw_request is None else await
                         self._get_trace_headers(ctx.raw_request.headers))

        pooling_params = self._create_pooling_params(ctx)
        if isinstance(pooling_params, ErrorResponse):
            return pooling_params

        if ctx.engine_prompts is None:
            return self.create_error_response(
                "Engine prompts not available")

        for i, engine_prompt in enumerate(ctx.engine_prompts):
            request_id_item = f"{ctx.request_id}-{i}"

            if ctx.request_prompts is None:
                return self.create_error_response(
                    "Request prompts not available")

            self._log_inputs(request_id_item,
                             ctx.request_prompts[i],
                             params=pooling_params,
                             lora_request=ctx.lora_request)

            # Mypy has an existing bug related to inferring the variance of
            # TypedDicts with `builtins.enumerate`:
            # https://github.com/python/mypy/issues/8586#issuecomment-2867698435
            engine_prompt = cast(
                Union[EngineTokensPrompt, EngineEmbedsPrompt],
                engine_prompt)
            generator = self.engine_client.encode(
                engine_prompt,
                pooling_params,
                request_id_item,
                lora_request=ctx.lora_request,
                trace_headers=trace_headers,
                priority=getattr(ctx.request, "priority", 0),
            )

            generators.append(generator)

        ctx.result_generator = merge_async_iterators(*generators)

        return None

    except Exception as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

_preprocess async

_preprocess(ctx: ServeContext) -> Optional[ErrorResponse]

Default preprocessing hook. Subclasses may override to prepare ctx (classification, embedding, etc.).

Source code in vllm/entrypoints/openai/serving_engine.py
async def _preprocess(
    self,
    ctx: ServeContext,
) -> Optional[ErrorResponse]:
    """
    Default preprocessing hook. Subclasses may override
    to prepare `ctx` (classification, embedding, etc.).
    """
    return None

_preprocess_chat async

_preprocess_chat(
    request: Union[ChatLikeRequest, ResponsesRequest],
    tokenizer: AnyTokenizer,
    messages: list[ChatCompletionMessageParam],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    add_generation_prompt: bool = True,
    continue_final_message: bool = False,
    tool_dicts: Optional[list[dict[str, Any]]] = None,
    documents: Optional[list[dict[str, str]]] = None,
    chat_template_kwargs: Optional[dict[str, Any]] = None,
    tool_parser: Optional[
        Callable[[AnyTokenizer], ToolParser]
    ] = None,
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=1)]
    ] = None,
    add_special_tokens: bool = False,
) -> tuple[
    list[ConversationMessage],
    Sequence[RequestPrompt],
    list[TokensPrompt],
]
Source code in vllm/entrypoints/openai/serving_engine.py
async def _preprocess_chat(
    self,
    request: Union[ChatLikeRequest, ResponsesRequest],
    tokenizer: AnyTokenizer,
    messages: list[ChatCompletionMessageParam],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    add_generation_prompt: bool = True,
    continue_final_message: bool = False,
    tool_dicts: Optional[list[dict[str, Any]]] = None,
    documents: Optional[list[dict[str, str]]] = None,
    chat_template_kwargs: Optional[dict[str, Any]] = None,
    tool_parser: Optional[Callable[[AnyTokenizer], ToolParser]] = None,
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
    add_special_tokens: bool = False,
) -> tuple[list[ConversationMessage], Sequence[RequestPrompt],
           list[EngineTokensPrompt]]:
    model_config = self.model_config

    resolved_content_format = resolve_chat_template_content_format(
        chat_template,
        tool_dicts,
        chat_template_content_format,
        tokenizer,
        model_config=model_config,
    )
    conversation, mm_data_future = parse_chat_messages_futures(
        messages,
        model_config,
        tokenizer,
        content_format=resolved_content_format,
    )

    _chat_template_kwargs: dict[str, Any] = dict(
        chat_template=chat_template,
        add_generation_prompt=add_generation_prompt,
        continue_final_message=continue_final_message,
        tools=tool_dicts,
        documents=documents,
    )
    _chat_template_kwargs.update(chat_template_kwargs or {})

    request_prompt: Union[str, list[int]]

    if tokenizer is None:
        request_prompt = "placeholder"
    elif isinstance(tokenizer, MistralTokenizer):
        request_prompt = apply_mistral_chat_template(
            tokenizer,
            messages=messages,
            **_chat_template_kwargs,
        )
    else:
        request_prompt = apply_hf_chat_template(
            tokenizer=tokenizer,
            conversation=conversation,
            model_config=model_config,
            **_chat_template_kwargs,
        )

    mm_data = await mm_data_future

    # tool parsing is done only if a tool_parser has been set and if
    # tool_choice is not "none" (if tool_choice is "none" but a tool_parser
    # is set, we want to prevent parsing a tool_call hallucinated by the LLM
    should_parse_tools = tool_parser is not None and (hasattr(
        request, "tool_choice") and request.tool_choice != "none")

    if should_parse_tools:
        if not isinstance(request, ChatCompletionRequest):
            msg = "Tool usage is only supported for Chat Completions API"
            raise NotImplementedError(msg)

        request = tool_parser(tokenizer).adjust_request(  # type: ignore
            request=request)

    if tokenizer is None:
        assert isinstance(request_prompt, str), (
            "Prompt has to be a string", \
            "when the tokenizer is not initialised"
        )
        prompt_inputs = TextTokensPrompt(prompt=request_prompt,
                                         prompt_token_ids=[1])
    elif isinstance(request_prompt, str):
        prompt_inputs = await self._tokenize_prompt_input_async(
            request,
            tokenizer,
            request_prompt,
            truncate_prompt_tokens=truncate_prompt_tokens,
            add_special_tokens=add_special_tokens,
        )
    else:
        # For MistralTokenizer
        assert is_list_of(request_prompt, int), (
            "Prompt has to be either a string or a list of token ids")
        prompt_inputs = TextTokensPrompt(
            prompt=tokenizer.decode(request_prompt),
            prompt_token_ids=request_prompt)

    engine_prompt = EngineTokensPrompt(
        prompt_token_ids=prompt_inputs["prompt_token_ids"])
    if mm_data is not None:
        engine_prompt["multi_modal_data"] = mm_data
    if request.mm_processor_kwargs is not None:
        engine_prompt["mm_processor_kwargs"] = request.mm_processor_kwargs

    if hasattr(request, "cache_salt") and request.cache_salt is not None:
        engine_prompt["cache_salt"] = request.cache_salt

    return conversation, [request_prompt], [engine_prompt]

_preprocess_completion async

_preprocess_completion(
    request: Union[
        DetokenizeRequest,
        EmbeddingCompletionRequest,
        RerankRequest,
        ClassificationRequest,
        ScoreRequest,
        TokenizeCompletionRequest,
    ],
    tokenizer: AnyTokenizer,
    input_or_inputs: Union[
        str, list[str], list[int], list[list[int]]
    ],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=-1)]
    ] = ...,
    add_special_tokens: bool = ...,
) -> tuple[list[TextTokensPrompt], list[TokensPrompt]]
_preprocess_completion(
    request: CompletionRequest,
    tokenizer: AnyTokenizer,
    input_or_inputs: Optional[
        Union[str, list[str], list[int], list[list[int]]]
    ],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=-1)]
    ] = ...,
    add_special_tokens: bool = ...,
) -> tuple[
    list[Union[TextTokensPrompt, EmbedsPrompt]],
    list[Union[TokensPrompt, EmbedsPrompt]],
]
_preprocess_completion(
    request: CompletionLikeRequest,
    tokenizer: AnyTokenizer,
    input_or_inputs: Optional[
        Union[str, list[str], list[int], list[list[int]]]
    ],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=-1)]
    ] = None,
    add_special_tokens: bool = True,
) -> tuple[
    Union[
        list[TextTokensPrompt],
        list[Union[TextTokensPrompt, EmbedsPrompt]],
    ],
    Union[
        list[TokensPrompt],
        list[Union[TokensPrompt, EmbedsPrompt]],
    ],
]
Source code in vllm/entrypoints/openai/serving_engine.py
async def _preprocess_completion(
    self,
    request: CompletionLikeRequest,
    tokenizer: AnyTokenizer,
    input_or_inputs: Optional[Union[str, list[str], list[int],
                                    list[list[int]]]],
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
    add_special_tokens: bool = True,
) -> tuple[Union[list[TextTokensPrompt], list[Union[
        TextTokensPrompt, EmbedsPrompt]]], Union[
            list[EngineTokensPrompt], list[Union[EngineTokensPrompt,
                                                 EngineEmbedsPrompt]]]]:
    if not isinstance(request,
                      CompletionRequest) and input_or_inputs is None:
        raise ValueError(
            "Prompt embeds with non-completion requests is not"
            " currently supported.")

    (request_prompts_text, request_prompts_embeds
     ) = await self._tokenize_prompt_input_or_inputs_async(
         request,
         tokenizer,
         input_or_inputs,
         truncate_prompt_tokens=truncate_prompt_tokens,
         add_special_tokens=add_special_tokens,
     )

    engine_prompts_text = [
        EngineTokensPrompt(
            prompt_token_ids=request_prompt_text["prompt_token_ids"])
        for request_prompt_text in request_prompts_text
    ]
    cache_salt = request.cache_salt if (
        hasattr(request, "cache_salt")
        and request.cache_salt is not None) else None
    if cache_salt:
        for prompt_text in engine_prompts_text:
            prompt_text["cache_salt"] = cache_salt

    # This check is equivalent to simply checking if
    # `request_prompts_embeds` is empty, but it's difficult to propagate
    # overloads to the private helper functions to enable this check.
    # This overload is needed because only TextPrompts are allowed for
    # non-completion requests and if we don't add the overload here,
    # everywhere this function is used outside of serving_completion will
    # need logic asserting that only text prompts are in the request.
    if not isinstance(request,
                      CompletionRequest) and input_or_inputs is not None:
        return request_prompts_text, engine_prompts_text

    engine_prompts_embeds = [
        EngineEmbedsPrompt(
            prompt_embeds=request_prompt_embeds["prompt_embeds"])
        for request_prompt_embeds in request_prompts_embeds
    ]
    if cache_salt:
        for prompt_embed in engine_prompts_embeds:
            prompt_embed["cache_salt"] = cache_salt

    request_prompts = request_prompts_embeds + request_prompts_text
    engine_prompts = engine_prompts_embeds + engine_prompts_text
    return request_prompts, engine_prompts

_tokenize_prompt_input_async async

_tokenize_prompt_input_async(
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_input: Union[str, list[int]],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=-1)]
    ] = None,
    add_special_tokens: bool = True,
) -> TextTokensPrompt

A simpler implementation of [_tokenize_prompt_input_or_inputs][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs] that assumes single input.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _tokenize_prompt_input_async(
    self,
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_input: Union[str, list[int]],
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
    add_special_tokens: bool = True,
) -> TextTokensPrompt:
    """
    A simpler implementation of
    [`_tokenize_prompt_input_or_inputs`][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs]
    that assumes single input.
    """
    async for result in self._tokenize_prompt_inputs_async(
            request,
            tokenizer,
        [prompt_input],
            truncate_prompt_tokens=truncate_prompt_tokens,
            add_special_tokens=add_special_tokens,
    ):
        return result
    raise ValueError("No results yielded from tokenization")

_tokenize_prompt_input_or_inputs_async async

_tokenize_prompt_input_or_inputs_async(
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    input_or_inputs: Optional[
        Union[str, list[str], list[int], list[list[int]]]
    ],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=-1)]
    ] = None,
    add_special_tokens: bool = True,
) -> tuple[list[TextTokensPrompt], list[EmbedsPrompt]]

Tokenize/detokenize depending on the input format.

According to OpenAI API <https://platform.openai.com/docs/api-reference/embeddings/create>_ , each input can be a string or array of tokens. Note that each request can pass one or more inputs.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _tokenize_prompt_input_or_inputs_async(
    self,
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    input_or_inputs: Optional[Union[str, list[str], list[int],
                                    list[list[int]]]],
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
    add_special_tokens: bool = True,
) -> tuple[list[TextTokensPrompt], list[EmbedsPrompt]]:
    """
    Tokenize/detokenize depending on the input format.

    According to `OpenAI API <https://platform.openai.com/docs/api-reference/embeddings/create>`_
    , each input can be a string or array of tokens. Note that each request
    can pass one or more inputs.
    """
    inputs_embeds = list[EmbedsPrompt]()
    inputs_text = list[TextTokensPrompt]()

    if (isinstance(request, CompletionRequest)
            and request.prompt_embeds is not None):
        inputs_embeds.extend(
            self._load_prompt_embeds(request.prompt_embeds,
                                     truncate_prompt_tokens))

    # Empty prompts are okay as long as there are prompt embeddings
    if input_or_inputs is None or (inputs_embeds
                                   and input_or_inputs == ""):
        return [], inputs_embeds

    # Although our type checking is based on mypy,
    # VSCode Pyright extension should still work properly
    # "is False" is required for Pyright to perform type narrowing
    # See: https://github.com/microsoft/pyright/issues/7672

    # Parse and batch the input prompts
    batch_inputs = parse_and_batch_prompt(input_or_inputs)

    # Process each input in the batch concurrently
    tasks = []
    for prompt_input in batch_inputs:
        if prompt_input["is_tokens"] is False:
            task = self._normalize_prompt_text_to_input(
                request,
                tokenizer,
                prompt_input["content"],
                truncate_prompt_tokens=truncate_prompt_tokens,
                add_special_tokens=add_special_tokens)
        else:
            task = self._normalize_prompt_tokens_to_input(
                request,
                tokenizer,
                prompt_input["content"],
                truncate_prompt_tokens=truncate_prompt_tokens)
        tasks.append(task)

    # Wait for all tokenization tasks to complete
    results = await asyncio.gather(*tasks)
    inputs_text.extend(results)

    return inputs_text, inputs_embeds

_tokenize_prompt_inputs_async async

_tokenize_prompt_inputs_async(
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_inputs: Iterable[Union[str, list[int]]],
    truncate_prompt_tokens: Optional[
        Annotated[int, Field(ge=-1)]
    ] = None,
    add_special_tokens: bool = True,
) -> AsyncGenerator[TextTokensPrompt, None]

A simpler implementation of [_tokenize_prompt_input_or_inputs][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs] that assumes multiple inputs.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _tokenize_prompt_inputs_async(
    self,
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_inputs: Iterable[Union[str, list[int]]],
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
    add_special_tokens: bool = True,
) -> AsyncGenerator[TextTokensPrompt, None]:
    """
    A simpler implementation of
    [`_tokenize_prompt_input_or_inputs`][vllm.entrypoints.openai.serving_engine.OpenAIServing._tokenize_prompt_input_or_inputs]
    that assumes multiple inputs.
    """
    for text in prompt_inputs:
        if isinstance(text, str):
            yield await self._normalize_prompt_text_to_input(
                request,
                tokenizer,
                prompt=text,
                truncate_prompt_tokens=truncate_prompt_tokens,
                add_special_tokens=add_special_tokens,
            )
        else:
            yield await self._normalize_prompt_tokens_to_input(
                request,
                tokenizer,
                prompt_ids=text,
                truncate_prompt_tokens=truncate_prompt_tokens,
            )

_validate_input

_validate_input(
    request: AnyRequest,
    input_ids: list[int],
    input_text: str,
) -> TextTokensPrompt
Source code in vllm/entrypoints/openai/serving_engine.py
def _validate_input(
    self,
    request: AnyRequest,
    input_ids: list[int],
    input_text: str,
) -> TextTokensPrompt:
    token_num = len(input_ids)

    # Note: EmbeddingRequest, ClassificationRequest,
    # and ScoreRequest doesn't have max_tokens
    if isinstance(request,
                  (EmbeddingChatRequest, EmbeddingCompletionRequest,
                   ScoreRequest, RerankRequest, ClassificationRequest)):

        # Note: input length can be up to the entire model context length
        # since these requests don't generate tokens.
        if token_num > self.max_model_len:
            operations: dict[type[AnyRequest], str] = {
                ScoreRequest: "score",
                ClassificationRequest: "classification"
            }
            operation = operations.get(type(request),
                                       "embedding generation")
            raise ValueError(
                f"This model's maximum context length is "
                f"{self.max_model_len} tokens. However, you requested "
                f"{token_num} tokens in the input for {operation}. "
                f"Please reduce the length of the input.")
        return TextTokensPrompt(prompt=input_text,
                                prompt_token_ids=input_ids)

    # Note: TokenizeRequest and DetokenizeRequest doesn't have max_tokens
    # and does not require model context length validation
    if isinstance(request, (TokenizeCompletionRequest, TokenizeChatRequest,
                            DetokenizeRequest)):
        return TextTokensPrompt(prompt=input_text,
                                prompt_token_ids=input_ids)

    # chat completion endpoint supports max_completion_tokens
    if isinstance(request, ChatCompletionRequest):
        # TODO(#9845): remove max_tokens when field dropped from OpenAI API
        max_tokens = request.max_completion_tokens or request.max_tokens
    else:
        max_tokens = getattr(request, "max_tokens", None)

    # Note: input length can be up to model context length - 1 for
    # completion-like requests.
    if token_num >= self.max_model_len:
        raise ValueError(
            f"This model's maximum context length is "
            f"{self.max_model_len} tokens. However, your request has "
            f"{token_num} input tokens. Please reduce the length of "
            "the input messages.")

    if max_tokens is not None and \
        token_num + max_tokens > self.max_model_len:
        raise ValueError(
            "'max_tokens' or 'max_completion_tokens' is too large: "
            f"{max_tokens}. This model's maximum context length is "
            f"{self.max_model_len} tokens and your request has "
            f"{token_num} input tokens ({max_tokens} > {self.max_model_len}"
            f" - {token_num}).")

    return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids)

_validate_request

_validate_request(
    ctx: ServeContext,
) -> Optional[ErrorResponse]
Source code in vllm/entrypoints/openai/serving_engine.py
def _validate_request(self, ctx: ServeContext) -> Optional[ErrorResponse]:
    truncate_prompt_tokens = getattr(ctx.request, "truncate_prompt_tokens",
                                     None)

    if truncate_prompt_tokens is not None:
        if truncate_prompt_tokens <= self.max_model_len:
            ctx.truncate_prompt_tokens = truncate_prompt_tokens
        else:
            return self.create_error_response(
                "truncate_prompt_tokens value is "
                "greater than max_model_len."
                " Please, select a smaller truncation size.")
    return None

create_error_response

create_error_response(
    message: str,
    err_type: str = "BadRequestError",
    status_code: HTTPStatus = BAD_REQUEST,
) -> ErrorResponse
Source code in vllm/entrypoints/openai/serving_engine.py
def create_error_response(
        self,
        message: str,
        err_type: str = "BadRequestError",
        status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
    return ErrorResponse(error=ErrorInfo(
        message=message, type=err_type, code=status_code.value))

create_streaming_error_response

create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
    status_code: HTTPStatus = BAD_REQUEST,
) -> str
Source code in vllm/entrypoints/openai/serving_engine.py
def create_streaming_error_response(
        self,
        message: str,
        err_type: str = "BadRequestError",
        status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
    json_str = json.dumps(
        self.create_error_response(message=message,
                                   err_type=err_type,
                                   status_code=status_code).model_dump())
    return json_str

handle async

Source code in vllm/entrypoints/openai/serving_engine.py
async def handle(
    self,
    ctx: ServeContext,
) -> Union[AnyResponse, ErrorResponse]:
    generation: AsyncGenerator[Union[AnyResponse, ErrorResponse], None]
    generation = self._pipeline(ctx)

    async for response in generation:
        return response

    return self.create_error_response("No response yielded from pipeline")

RequestProcessingMixin

Bases: BaseModel

Mixin for request processing, handling prompt preparation and engine input.

Source code in vllm/entrypoints/openai/serving_engine.py
class RequestProcessingMixin(BaseModel):
    """
    Mixin for request processing,
    handling prompt preparation and engine input.
    """
    request_prompts: Optional[Sequence[RequestPrompt]] = []
    engine_prompts: Optional[Union[list[EngineTokensPrompt],
                                   list[EngineEmbedsPrompt]]] = []

    model_config = ConfigDict(arbitrary_types_allowed=True)

engine_prompts class-attribute instance-attribute

engine_prompts: Optional[
    Union[list[TokensPrompt], list[EmbedsPrompt]]
] = []

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

request_prompts class-attribute instance-attribute

request_prompts: Optional[Sequence[RequestPrompt]] = []

ResponseGenerationMixin

Bases: BaseModel

Mixin for response generation, managing result generators and final batch results.

Source code in vllm/entrypoints/openai/serving_engine.py
class ResponseGenerationMixin(BaseModel):
    """
    Mixin for response generation,
    managing result generators and final batch results.
    """
    result_generator: Optional[AsyncGenerator[tuple[int, Union[
        RequestOutput, PoolingRequestOutput]], None]] = None
    final_res_batch: list[Union[RequestOutput, PoolingRequestOutput]] = Field(
        default_factory=list)

    model_config = ConfigDict(arbitrary_types_allowed=True)

final_res_batch class-attribute instance-attribute

final_res_batch: list[
    Union[RequestOutput, PoolingRequestOutput]
] = Field(default_factory=list)

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

result_generator class-attribute instance-attribute

result_generator: Optional[
    AsyncGenerator[
        tuple[
            int, Union[RequestOutput, PoolingRequestOutput]
        ],
        None,
    ]
] = None

ServeContext

Bases: RequestProcessingMixin, ResponseGenerationMixin, BaseModel, Generic[RequestT]

Source code in vllm/entrypoints/openai/serving_engine.py
class ServeContext(RequestProcessingMixin, ResponseGenerationMixin, BaseModel,
                   Generic[RequestT]):
    # Shared across all requests
    request: RequestT
    raw_request: Optional[Request] = None
    model_name: str
    request_id: str
    created_time: int = Field(default_factory=lambda: int(time.time()))
    lora_request: Optional[LoRARequest] = None

    # Shared across most requests
    tokenizer: Optional[AnyTokenizer] = None
    truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None

    # `protected_namespaces` resolves Pydantic v2's warning
    # on conflict with protected namespace "model_"
    model_config = ConfigDict(
        protected_namespaces=(),
        arbitrary_types_allowed=True,
    )

created_time class-attribute instance-attribute

created_time: int = Field(
    default_factory=lambda: int(time())
)

lora_request class-attribute instance-attribute

lora_request: Optional[LoRARequest] = None

model_config class-attribute instance-attribute

model_config = ConfigDict(
    protected_namespaces=(), arbitrary_types_allowed=True
)

model_name instance-attribute

model_name: str

raw_request class-attribute instance-attribute

raw_request: Optional[Request] = None

request instance-attribute

request: RequestT

request_id instance-attribute

request_id: str

tokenizer class-attribute instance-attribute

tokenizer: Optional[AnyTokenizer] = None

truncate_prompt_tokens class-attribute instance-attribute

truncate_prompt_tokens: Optional[
    Annotated[int, Field(ge=1)]
] = None

TextTokensPrompt

Bases: TypedDict

Source code in vllm/entrypoints/openai/serving_engine.py
class TextTokensPrompt(TypedDict):
    prompt: str
    prompt_token_ids: list[int]

prompt instance-attribute

prompt: str

prompt_token_ids instance-attribute

prompt_token_ids: list[int]

clamp_prompt_logprobs

clamp_prompt_logprobs(
    prompt_logprobs: Union[PromptLogprobs, None],
) -> Union[PromptLogprobs, None]
Source code in vllm/entrypoints/openai/serving_engine.py
def clamp_prompt_logprobs(
    prompt_logprobs: Union[PromptLogprobs,
                           None]) -> Union[PromptLogprobs, None]:
    if prompt_logprobs is None:
        return prompt_logprobs

    for logprob_dict in prompt_logprobs:
        if logprob_dict is None:
            continue
        for logprob_values in logprob_dict.values():
            if logprob_values.logprob == float('-inf'):
                logprob_values.logprob = -9999.0
    return prompt_logprobs

is_embeds_prompt

is_embeds_prompt(
    prompt: RequestPrompt,
) -> TypeIs[EmbedsPrompt]
Source code in vllm/entrypoints/openai/serving_engine.py
def is_embeds_prompt(prompt: RequestPrompt) -> TypeIs[EmbedsPrompt]:
    return (isinstance(prompt, dict) and "prompt_token_ids" not in prompt
            and "prompt_embeds" in prompt)

is_text_tokens_prompt

is_text_tokens_prompt(
    prompt: RequestPrompt,
) -> TypeIs[TextTokensPrompt]
Source code in vllm/entrypoints/openai/serving_engine.py
def is_text_tokens_prompt(prompt: RequestPrompt) -> TypeIs[TextTokensPrompt]:
    return (isinstance(prompt, dict) and "prompt_token_ids" in prompt
            and "prompt_embeds" not in prompt)