@ToolParserManager.register_module("glm45")
class Glm4MoeModelToolParser(ToolParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
self.current_tool_name_sent = False
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id = -1
self.streamed_args_for_tool: list[str] = []
self.tool_call_start_token = "<tool_call>"
self.tool_call_end_token = "</tool_call>"
self.tool_calls_start_token = self.tool_call_start_token
self.func_call_regex = re.compile(r"<tool_call>.*?</tool_call>",
re.DOTALL)
self.func_detail_regex = re.compile(
r"<tool_call>([^\n]*)\n(.*)</tool_call>", re.DOTALL)
self.func_arg_regex = re.compile(
r"<arg_key>(.*?)</arg_key>\s*<arg_value>(.*?)</arg_value>",
re.DOTALL)
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ToolParser "
"constructor during construction.")
self.tool_call_start_token_id = self.vocab.get(
self.tool_call_start_token)
self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
self._buffer = ""
def extract_tool_calls(
self,
model_output: str,
request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
def _is_string_type(
tool_name: str, arg_name: str,
tools: Optional[list[ChatCompletionToolsParam]]) -> bool:
if tools is None:
return False
for tool in tools:
if tool.function.name == tool_name:
if tool.function.parameters is None:
return False
arg_type = tool.function.parameters.get(
"properties", {}).get(arg_name, {}).get("type", None)
return arg_type == "string"
logger.warning("No tool named '%s'.", tool_name)
return False
def _deserialize(value: str) -> Any:
try:
return json.loads(value)
except Exception:
pass
try:
return ast.literal_eval(value)
except Exception:
pass
return value
matched_tool_calls = self.func_call_regex.findall(model_output)
logger.debug("model_output: %s", model_output)
try:
tool_calls = []
for match in matched_tool_calls:
tc_detail = self.func_detail_regex.search(match)
tc_name = tc_detail.group(1)
tc_args = tc_detail.group(2)
pairs = self.func_arg_regex.findall(tc_args)
arg_dct = {}
for key, value in pairs:
arg_key = key.strip()
arg_val = value.strip()
if not _is_string_type(tc_name, arg_key, request.tools):
arg_val = _deserialize(arg_val)
logger.debug("arg_key = %s, arg_val = %s", arg_key,
arg_val)
arg_dct[arg_key] = arg_val
tool_calls.append(
ToolCall(type="function",
function=FunctionCall(
name=tc_name, arguments=json.dumps(arg_dct))))
except Exception:
logger.exception("Failed to extract tool call spec")
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
else:
if len(tool_calls) > 0:
content = model_output[:model_output.
find(self.tool_calls_start_token)]
return ExtractedToolCallInformation(tools_called=True,
tool_calls=tool_calls,
content=content)
return ExtractedToolCallInformation(tools_called=False,
tool_calls=[],
content=model_output)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
self._buffer += delta_text
cur_text = self._buffer
start_idx = cur_text.find(self.tool_call_start_token)
if start_idx == -1:
self._buffer = ""
if self.current_tool_id > 0:
cur_text = ""
return DeltaMessage(content=cur_text)
logger.debug("cur_text = %s", cur_text)
end_idx = cur_text.find(self.tool_call_end_token)
if end_idx != -1:
if self.current_tool_id == -1:
self.current_tool_id = 0
self.prev_tool_call_arr = []
self.streamed_args_for_tool = []
while len(self.prev_tool_call_arr) <= self.current_tool_id:
self.prev_tool_call_arr.append({})
while len(self.streamed_args_for_tool) <= self.current_tool_id:
self.streamed_args_for_tool.append("")
extracted_tool_calls = self.extract_tool_calls(
cur_text[:end_idx + len(self.tool_call_end_token)], request)
if len(extracted_tool_calls.tool_calls) == 0:
logger.warning("Failed to extract any tool calls.")
return None
tool_call = extracted_tool_calls.tool_calls[0]
self.prev_tool_call_arr[self.current_tool_id] = {
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments)
}
self.streamed_args_for_tool[
self.current_tool_id] = tool_call.function.arguments
delta = DeltaMessage(
content=extracted_tool_calls.content,
tool_calls=[
DeltaToolCall(index=self.current_tool_id,
id=tool_call.id,
type=tool_call.type,
function=DeltaFunctionCall(
name=tool_call.function.name,
arguments=tool_call.function.arguments))
])
self.current_tool_id += 1
self._buffer = cur_text[end_idx + len(self.tool_call_end_token):]
return delta
self._buffer = cur_text[start_idx:]
return DeltaMessage(content=cur_text[:start_idx])