Skip to content

vllm.entrypoints.openai.tool_parsers.glm4_moe_tool_parser

logger module-attribute

logger = init_logger(__name__)

Glm4MoeModelToolParser

Bases: ToolParser

Source code in vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py
@ToolParserManager.register_module("glm45")
class Glm4MoeModelToolParser(ToolParser):

    def __init__(self, tokenizer: AnyTokenizer):
        super().__init__(tokenizer)
        self.current_tool_name_sent = False
        self.prev_tool_call_arr: list[dict] = []
        self.current_tool_id = -1
        self.streamed_args_for_tool: list[str] = []
        self.tool_call_start_token = "<tool_call>"
        self.tool_call_end_token = "</tool_call>"

        self.tool_calls_start_token = self.tool_call_start_token

        self.func_call_regex = re.compile(r"<tool_call>.*?</tool_call>",
                                          re.DOTALL)
        self.func_detail_regex = re.compile(
            r"<tool_call>([^\n]*)\n(.*)</tool_call>", re.DOTALL)
        self.func_arg_regex = re.compile(
            r"<arg_key>(.*?)</arg_key>\s*<arg_value>(.*?)</arg_value>",
            re.DOTALL)
        if not self.model_tokenizer:
            raise ValueError(
                "The model tokenizer must be passed to the ToolParser "
                "constructor during construction.")

        self.tool_call_start_token_id = self.vocab.get(
            self.tool_call_start_token)
        self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
        self._buffer = ""

    def extract_tool_calls(
        self,
        model_output: str,
        request: ChatCompletionRequest,
    ) -> ExtractedToolCallInformation:

        def _is_string_type(
                tool_name: str, arg_name: str,
                tools: Optional[list[ChatCompletionToolsParam]]) -> bool:
            if tools is None:
                return False
            for tool in tools:
                if tool.function.name == tool_name:
                    if tool.function.parameters is None:
                        return False
                    arg_type = tool.function.parameters.get(
                        "properties", {}).get(arg_name, {}).get("type", None)
                    return arg_type == "string"
            logger.warning("No tool named '%s'.", tool_name)
            return False

        def _deserialize(value: str) -> Any:
            try:
                return json.loads(value)
            except Exception:
                pass

            try:
                return ast.literal_eval(value)
            except Exception:
                pass
            return value

        matched_tool_calls = self.func_call_regex.findall(model_output)
        logger.debug("model_output: %s", model_output)
        try:
            tool_calls = []
            for match in matched_tool_calls:
                tc_detail = self.func_detail_regex.search(match)
                tc_name = tc_detail.group(1)
                tc_args = tc_detail.group(2)
                pairs = self.func_arg_regex.findall(tc_args)
                arg_dct = {}
                for key, value in pairs:
                    arg_key = key.strip()
                    arg_val = value.strip()
                    if not _is_string_type(tc_name, arg_key, request.tools):
                        arg_val = _deserialize(arg_val)
                    logger.debug("arg_key = %s, arg_val = %s", arg_key,
                                 arg_val)
                    arg_dct[arg_key] = arg_val
                tool_calls.append(
                    ToolCall(type="function",
                             function=FunctionCall(
                                 name=tc_name, arguments=json.dumps(arg_dct))))
        except Exception:
            logger.exception("Failed to extract tool call spec")
            return ExtractedToolCallInformation(tools_called=False,
                                                tool_calls=[],
                                                content=model_output)
        else:
            if len(tool_calls) > 0:
                content = model_output[:model_output.
                                       find(self.tool_calls_start_token)]
                return ExtractedToolCallInformation(tools_called=True,
                                                    tool_calls=tool_calls,
                                                    content=content)
            return ExtractedToolCallInformation(tools_called=False,
                                                tool_calls=[],
                                                content=model_output)

    def extract_tool_calls_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
        request: ChatCompletionRequest,
    ) -> Union[DeltaMessage, None]:
        self._buffer += delta_text
        cur_text = self._buffer
        start_idx = cur_text.find(self.tool_call_start_token)
        if start_idx == -1:
            self._buffer = ""
            if self.current_tool_id > 0:
                cur_text = ""
            return DeltaMessage(content=cur_text)
        logger.debug("cur_text = %s", cur_text)
        end_idx = cur_text.find(self.tool_call_end_token)
        if end_idx != -1:
            if self.current_tool_id == -1:
                self.current_tool_id = 0
                self.prev_tool_call_arr = []
                self.streamed_args_for_tool = []
            while len(self.prev_tool_call_arr) <= self.current_tool_id:
                self.prev_tool_call_arr.append({})
            while len(self.streamed_args_for_tool) <= self.current_tool_id:
                self.streamed_args_for_tool.append("")

            extracted_tool_calls = self.extract_tool_calls(
                cur_text[:end_idx + len(self.tool_call_end_token)], request)

            if len(extracted_tool_calls.tool_calls) == 0:
                logger.warning("Failed to extract any tool calls.")
                return None
            tool_call = extracted_tool_calls.tool_calls[0]
            self.prev_tool_call_arr[self.current_tool_id] = {
                "name": tool_call.function.name,
                "arguments": json.loads(tool_call.function.arguments)
            }
            self.streamed_args_for_tool[
                self.current_tool_id] = tool_call.function.arguments
            delta = DeltaMessage(
                content=extracted_tool_calls.content,
                tool_calls=[
                    DeltaToolCall(index=self.current_tool_id,
                                  id=tool_call.id,
                                  type=tool_call.type,
                                  function=DeltaFunctionCall(
                                      name=tool_call.function.name,
                                      arguments=tool_call.function.arguments))
                ])
            self.current_tool_id += 1
            self._buffer = cur_text[end_idx + len(self.tool_call_end_token):]
            return delta

        self._buffer = cur_text[start_idx:]
        return DeltaMessage(content=cur_text[:start_idx])

_buffer instance-attribute

_buffer = ''

current_tool_id instance-attribute

current_tool_id = -1

current_tool_name_sent instance-attribute

current_tool_name_sent = False

func_arg_regex instance-attribute

func_arg_regex = compile(
    "<arg_key>(.*?)</arg_key>\\s*<arg_value>(.*?)</arg_value>",
    DOTALL,
)

func_call_regex instance-attribute

func_call_regex = compile(
    "<tool_call>.*?</tool_call>", DOTALL
)

func_detail_regex instance-attribute

func_detail_regex = compile(
    "<tool_call>([^\\n]*)\\n(.*)</tool_call>", DOTALL
)

prev_tool_call_arr instance-attribute

prev_tool_call_arr: list[dict] = []

streamed_args_for_tool instance-attribute

streamed_args_for_tool: list[str] = []

tool_call_end_token instance-attribute

tool_call_end_token = '</tool_call>'

tool_call_end_token_id instance-attribute

tool_call_end_token_id = get(tool_call_end_token)

tool_call_start_token instance-attribute

tool_call_start_token = '<tool_call>'

tool_call_start_token_id instance-attribute

tool_call_start_token_id = get(tool_call_start_token)

tool_calls_start_token instance-attribute

tool_calls_start_token = tool_call_start_token

__init__

__init__(tokenizer: AnyTokenizer)
Source code in vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py
def __init__(self, tokenizer: AnyTokenizer):
    super().__init__(tokenizer)
    self.current_tool_name_sent = False
    self.prev_tool_call_arr: list[dict] = []
    self.current_tool_id = -1
    self.streamed_args_for_tool: list[str] = []
    self.tool_call_start_token = "<tool_call>"
    self.tool_call_end_token = "</tool_call>"

    self.tool_calls_start_token = self.tool_call_start_token

    self.func_call_regex = re.compile(r"<tool_call>.*?</tool_call>",
                                      re.DOTALL)
    self.func_detail_regex = re.compile(
        r"<tool_call>([^\n]*)\n(.*)</tool_call>", re.DOTALL)
    self.func_arg_regex = re.compile(
        r"<arg_key>(.*?)</arg_key>\s*<arg_value>(.*?)</arg_value>",
        re.DOTALL)
    if not self.model_tokenizer:
        raise ValueError(
            "The model tokenizer must be passed to the ToolParser "
            "constructor during construction.")

    self.tool_call_start_token_id = self.vocab.get(
        self.tool_call_start_token)
    self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
    self._buffer = ""

extract_tool_calls

extract_tool_calls(
    model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation
Source code in vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py
def extract_tool_calls(
    self,
    model_output: str,
    request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:

    def _is_string_type(
            tool_name: str, arg_name: str,
            tools: Optional[list[ChatCompletionToolsParam]]) -> bool:
        if tools is None:
            return False
        for tool in tools:
            if tool.function.name == tool_name:
                if tool.function.parameters is None:
                    return False
                arg_type = tool.function.parameters.get(
                    "properties", {}).get(arg_name, {}).get("type", None)
                return arg_type == "string"
        logger.warning("No tool named '%s'.", tool_name)
        return False

    def _deserialize(value: str) -> Any:
        try:
            return json.loads(value)
        except Exception:
            pass

        try:
            return ast.literal_eval(value)
        except Exception:
            pass
        return value

    matched_tool_calls = self.func_call_regex.findall(model_output)
    logger.debug("model_output: %s", model_output)
    try:
        tool_calls = []
        for match in matched_tool_calls:
            tc_detail = self.func_detail_regex.search(match)
            tc_name = tc_detail.group(1)
            tc_args = tc_detail.group(2)
            pairs = self.func_arg_regex.findall(tc_args)
            arg_dct = {}
            for key, value in pairs:
                arg_key = key.strip()
                arg_val = value.strip()
                if not _is_string_type(tc_name, arg_key, request.tools):
                    arg_val = _deserialize(arg_val)
                logger.debug("arg_key = %s, arg_val = %s", arg_key,
                             arg_val)
                arg_dct[arg_key] = arg_val
            tool_calls.append(
                ToolCall(type="function",
                         function=FunctionCall(
                             name=tc_name, arguments=json.dumps(arg_dct))))
    except Exception:
        logger.exception("Failed to extract tool call spec")
        return ExtractedToolCallInformation(tools_called=False,
                                            tool_calls=[],
                                            content=model_output)
    else:
        if len(tool_calls) > 0:
            content = model_output[:model_output.
                                   find(self.tool_calls_start_token)]
            return ExtractedToolCallInformation(tools_called=True,
                                                tool_calls=tool_calls,
                                                content=content)
        return ExtractedToolCallInformation(tools_called=False,
                                            tool_calls=[],
                                            content=model_output)

extract_tool_calls_streaming

extract_tool_calls_streaming(
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]
Source code in vllm/entrypoints/openai/tool_parsers/glm4_moe_tool_parser.py
def extract_tool_calls_streaming(
    self,
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
    self._buffer += delta_text
    cur_text = self._buffer
    start_idx = cur_text.find(self.tool_call_start_token)
    if start_idx == -1:
        self._buffer = ""
        if self.current_tool_id > 0:
            cur_text = ""
        return DeltaMessage(content=cur_text)
    logger.debug("cur_text = %s", cur_text)
    end_idx = cur_text.find(self.tool_call_end_token)
    if end_idx != -1:
        if self.current_tool_id == -1:
            self.current_tool_id = 0
            self.prev_tool_call_arr = []
            self.streamed_args_for_tool = []
        while len(self.prev_tool_call_arr) <= self.current_tool_id:
            self.prev_tool_call_arr.append({})
        while len(self.streamed_args_for_tool) <= self.current_tool_id:
            self.streamed_args_for_tool.append("")

        extracted_tool_calls = self.extract_tool_calls(
            cur_text[:end_idx + len(self.tool_call_end_token)], request)

        if len(extracted_tool_calls.tool_calls) == 0:
            logger.warning("Failed to extract any tool calls.")
            return None
        tool_call = extracted_tool_calls.tool_calls[0]
        self.prev_tool_call_arr[self.current_tool_id] = {
            "name": tool_call.function.name,
            "arguments": json.loads(tool_call.function.arguments)
        }
        self.streamed_args_for_tool[
            self.current_tool_id] = tool_call.function.arguments
        delta = DeltaMessage(
            content=extracted_tool_calls.content,
            tool_calls=[
                DeltaToolCall(index=self.current_tool_id,
                              id=tool_call.id,
                              type=tool_call.type,
                              function=DeltaFunctionCall(
                                  name=tool_call.function.name,
                                  arguments=tool_call.function.arguments))
            ])
        self.current_tool_id += 1
        self._buffer = cur_text[end_idx + len(self.tool_call_end_token):]
        return delta

    self._buffer = cur_text[start_idx:]
    return DeltaMessage(content=cur_text[:start_idx])