Skip to content

vllm.entrypoints.openai.tool_parsers.minimax_tool_parser

logger module-attribute

logger = init_logger(__name__)

MinimaxToolParser

Bases: ToolParser

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
@ToolParserManager.register_module("minimax")
class MinimaxToolParser(ToolParser):

    def __init__(self, tokenizer: AnyTokenizer):
        super().__init__(tokenizer)

        # Initialize streaming state for tracking tool call progress
        self.streaming_state: dict[str, Any] = {
            "current_tool_index": -1,  # Index of current tool being processed
            "tool_ids": [],  # List of tool call IDs
            "sent_tools": [],  # List of tools that have been sent
        }

        # Define tool call tokens and patterns
        self.tool_call_start_token = "<tool_calls>"
        self.tool_call_end_token = "</tool_calls>"
        self.tool_call_regex = re.compile(
            r"<tool_calls>(.*?)</tool_calls>|<tool_calls>(.*)", re.DOTALL)
        self.thinking_tag_pattern = r"<think>(.*?)</think>"
        self.tool_name_pattern = re.compile(r'"name":\s*"([^"]+)"')
        self.tool_args_pattern = re.compile(r'"arguments":\s*')

        # Buffer for handling partial tool calls during streaming
        self.pending_buffer = ""
        self.in_thinking_tag = False

        if not self.model_tokenizer:
            raise ValueError(
                "The model tokenizer must be passed to the ToolParser "
                "constructor during construction.")

        # Get token IDs for tool call start/end tokens
        self.tool_call_start_token_id = self.vocab.get(
            self.tool_call_start_token)
        self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)

        if (self.tool_call_start_token_id is None
                or self.tool_call_end_token_id is None):
            logger.warning(
                "Minimax Tool parser could not locate tool call start/end "
                "tokens in the tokenizer. Falling back to string matching.")

    def preprocess_model_output(self, model_output: str) -> str:
        """
        Preprocess model output by removing tool calls from thinking tags.

        Args:
            model_output: Raw model output string

        Returns:
            Preprocessed model output with tool calls removed from thinking tags
        """

        def remove_tool_calls_from_think(match):
            think_content = match.group(1)
            cleaned_content = re.sub(r"<tool_calls>.*?</tool_calls>",
                                     "",
                                     think_content,
                                     flags=re.DOTALL)
            return f"<think>{cleaned_content}</think>"

        return re.sub(self.thinking_tag_pattern,
                      remove_tool_calls_from_think,
                      model_output,
                      flags=re.DOTALL)

    def _clean_duplicate_braces(self, args_text: str) -> str:
        """
        Clean duplicate closing braces from arguments text.

        Args:
            args_text: Raw arguments text

        Returns:
            Cleaned arguments text with proper JSON formatting
        """
        args_text = args_text.strip()
        if not args_text:
            return args_text

        try:
            json.loads(args_text)
            return args_text
        except json.JSONDecodeError:
            pass

        while args_text.endswith('}}'):
            candidate = args_text[:-1]
            try:
                json.loads(candidate)
                return candidate
            except json.JSONDecodeError:
                args_text = candidate

        return args_text

    def _clean_delta_braces(self, delta_text: str) -> str:
        """
        Clean delta text by removing excessive closing braces.

        Args:
            delta_text: Delta text to clean

        Returns:
            Cleaned delta text
        """
        if not delta_text:
            return delta_text

        delta_stripped = delta_text.strip()

        if delta_stripped and all(c in '}\n\r\t ' for c in delta_stripped):
            brace_count = delta_stripped.count('}')
            if brace_count > 1:
                return '}\n' if delta_text.endswith('\n') else '}'

        return delta_text

    def extract_tool_calls(
        self,
        model_output: str,
        request: ChatCompletionRequest,
    ) -> ExtractedToolCallInformation:
        """
        Extract tool calls from model output for non-streaming mode.

        Args:
            model_output: Complete model output
            request: Chat completion request

        Returns:
            ExtractedToolCallInformation containing tool calls and content
        """
        processed_output = self.preprocess_model_output(model_output)

        if self.tool_call_start_token not in processed_output:
            return ExtractedToolCallInformation(tools_called=False,
                                                tool_calls=[],
                                                content=model_output)

        try:
            function_call_tuples = self.tool_call_regex.findall(
                processed_output)

            raw_function_calls = []
            for match in function_call_tuples:
                tool_call_content = match[0] if match[0] else match[1]
                if tool_call_content.strip():
                    lines = tool_call_content.strip().split('\n')
                    for line in lines:
                        line = line.strip()
                        if line and line.startswith('{') and line.endswith(
                                '}'):
                            try:
                                parsed_call = json.loads(line)
                                raw_function_calls.append(parsed_call)
                            except json.JSONDecodeError:
                                continue

            tool_calls = []
            for function_call in raw_function_calls:
                if "name" in function_call and "arguments" in function_call:
                    tool_calls.append(
                        ToolCall(type="function",
                                 function=FunctionCall(
                                     name=function_call["name"],
                                     arguments=json.dumps(
                                         function_call["arguments"],
                                         ensure_ascii=False))))

            processed_pos = processed_output.find(self.tool_call_start_token)
            if processed_pos != -1:
                processed_content = processed_output[:processed_pos].strip()

                if processed_content:
                    lines = processed_content.split('\n')
                    for line in reversed(lines):
                        line = line.strip()
                        if line:
                            pos = model_output.find(line)
                            if pos != -1:
                                content = model_output[:pos + len(line)]
                                break
                    else:
                        content = ""
                else:
                    content = ""
            else:
                content = model_output

            return ExtractedToolCallInformation(
                tools_called=len(tool_calls) > 0,
                tool_calls=tool_calls,
                content=content.strip() if content.strip() else None)

        except Exception:
            logger.exception(
                "An unexpected error occurred during tool call extraction.")
            return ExtractedToolCallInformation(tools_called=False,
                                                tool_calls=[],
                                                content=model_output)

    def _update_thinking_state(self, text: str) -> None:
        """
        Update the thinking tag state based on text content.

        Args:
            text: Text to analyze for thinking tags
        """
        open_count = text.count("<think>")
        close_count = text.count("</think>")
        self.in_thinking_tag = open_count > close_count or (
            open_count == close_count and text.endswith("</think>"))

    def _is_potential_tag_start(self, text: str) -> bool:
        """
        Check if text might be the start of a tool call tag.

        Args:
            text: Text to check

        Returns:
            True if text could be the start of a tool call tag
        """
        for tag in [self.tool_call_start_token, self.tool_call_end_token]:
            if any(
                    tag.startswith(text[-i:])
                    for i in range(1, min(len(text) + 1, len(tag)))):
                return True
        return False

    def _should_buffer_content(self, delta_text: str) -> bool:
        """
        Determine if content should be buffered for later processing.

        Args:
            delta_text: Delta text to check

        Returns:
            True if content should be buffered
        """
        if self.in_thinking_tag:
            return False
        return bool(self.pending_buffer
                    or self.tool_call_start_token in delta_text
                    or self.tool_call_end_token in delta_text
                    or delta_text.startswith('<'))

    def _split_content_for_buffering(self, delta_text: str) -> tuple[str, str]:
        """
        Split delta text into safe content and potential tag content.

        Args:
            delta_text: Delta text to split

        Returns:
            Tuple of (safe_content, potential_tag_content)
        """
        if self.in_thinking_tag:
            return delta_text, ""

        for tag in [self.tool_call_start_token, self.tool_call_end_token]:
            for i in range(1, len(tag)):
                tag_prefix = tag[:i]
                pos = delta_text.rfind(tag_prefix)
                if pos != -1 and tag.startswith(delta_text[pos:]):
                    return delta_text[:pos], delta_text[pos:]
        return delta_text, ""

    def _process_buffer(self, new_content: str) -> str:
        """
        Process buffered content and return output content.

        Args:
            new_content: New content to add to buffer

        Returns:
            Processed output content
        """
        self.pending_buffer += new_content
        output_content = ""

        if self.in_thinking_tag:
            output_content = self.pending_buffer
            self.pending_buffer = ""
            return output_content

        while self.pending_buffer:
            start_pos = self.pending_buffer.find(self.tool_call_start_token)
            end_pos = self.pending_buffer.find(self.tool_call_end_token)

            if start_pos != -1 and (end_pos == -1 or start_pos < end_pos):
                tag_pos, tag_len = start_pos, len(self.tool_call_start_token)
            elif end_pos != -1:
                tag_pos, tag_len = end_pos, len(self.tool_call_end_token)
            else:
                if self._is_potential_tag_start(self.pending_buffer):
                    break
                output_content += self.pending_buffer
                self.pending_buffer = ""
                break

            output_content += self.pending_buffer[:tag_pos]
            self.pending_buffer = self.pending_buffer[tag_pos + tag_len:]

        return output_content

    def _reset_streaming_state(self) -> None:
        """Reset the streaming state to initial values."""
        self.streaming_state = {
            "current_tool_index": -1,
            "tool_ids": [],
            "sent_tools": [],
        }

    def _advance_to_next_tool(self) -> None:
        """Advance to the next tool in the streaming sequence."""
        self.streaming_state["current_tool_index"] = int(
            self.streaming_state["current_tool_index"]) + 1

    def _set_current_tool_index(self, index: int) -> None:
        """
        Set the current tool index.

        Args:
            index: Tool index to set
        """
        self.streaming_state["current_tool_index"] = index

    def _get_current_tool_index(self) -> int:
        """
        Get the current tool index.

        Returns:
            Current tool index
        """
        return int(self.streaming_state["current_tool_index"])

    def _get_next_unsent_tool_index(self, tool_count: int) -> int:
        """
        Get the index of the next unsent tool.

        Args:
            tool_count: Total number of tools

        Returns:
            Index of next unsent tool, or -1 if all tools sent
        """
        sent_tools = list(self.streaming_state["sent_tools"])
        for i in range(tool_count):
            if i < len(sent_tools):
                if not sent_tools[i]["sent_name"]:
                    return i
            else:
                return i
        return -1

    def _ensure_state_arrays(self, tool_count: int) -> None:
        """
        Ensure state arrays have sufficient capacity for tool_count tools.

        Args:
            tool_count: Number of tools to prepare for
        """
        sent_tools = list(self.streaming_state["sent_tools"])
        tool_ids = list(self.streaming_state["tool_ids"])

        while len(sent_tools) < tool_count:
            sent_tools.append({
                "sent_name": False,
                "sent_arguments": "",
                "id": make_tool_call_id(),
            })

        while len(tool_ids) < tool_count:
            tool_ids.append(None)

        self.streaming_state["sent_tools"] = sent_tools
        self.streaming_state["tool_ids"] = tool_ids

    def _detect_tools_in_text(self, text: str) -> int:
        """
        Detect the number of tools in text by counting name patterns.

        Args:
            text: Text to analyze

        Returns:
            Number of tools detected
        """
        matches = self.tool_name_pattern.findall(text)
        return len(matches)

    def _find_tool_boundaries(self, text: str) -> list[tuple[int, int]]:
        """
        Find the boundaries of tool calls in text.

        Args:
            text: Text to analyze

        Returns:
            List of (start, end) positions for tool calls
        """
        boundaries = []
        i = 0
        while i < len(text):
            if text[i] == '{':
                start = i
                depth = 0
                has_name = False
                has_arguments = False

                while i < len(text):
                    if text[i] == '{':
                        depth += 1
                    elif text[i] == '}':
                        depth -= 1
                        if depth == 0:
                            end = i + 1
                            segment = text[start:end]
                            if '"name"' in segment and '"arguments"' in segment:
                                boundaries.append((start, end))
                            break

                    if not has_name and '"name"' in text[start:i + 1]:
                        has_name = True
                    if not has_arguments and '"arguments"' in text[start:i +
                                                                   1]:
                        has_arguments = True

                    i += 1

                if depth > 0 and has_name:
                    boundaries.append((start, i))
            else:
                i += 1
        return boundaries

    def _extract_tool_args(self, tool_content: str, args_match) -> str:
        """
        Extract tool arguments from tool content.

        Args:
            tool_content: Tool call content
            args_match: Regex match for arguments pattern

        Returns:
            Extracted arguments as string
        """
        args_start_pos = args_match.end()
        remaining_content = tool_content[args_start_pos:]

        if remaining_content.strip().startswith('{'):
            depth = 0
            for i, char in enumerate(remaining_content):
                if char == '{':
                    depth += 1
                elif char == '}':
                    depth -= 1
                    if depth == 0:
                        return remaining_content[:i + 1]
        else:
            args_end = remaining_content.find('}')
            if args_end > 0:
                return remaining_content[:args_end].strip()

        return remaining_content.rstrip('}').strip()

    def _get_current_tool_content(
            self, text: str,
            tool_index: int) -> tuple[Optional[str], Optional[str]]:
        """
        Get the content of a specific tool by index.

        Args:
            text: Text containing tool calls
            tool_index: Index of tool to extract

        Returns:
            Tuple of (tool_name, tool_arguments) or (None, None) if not found
        """
        boundaries = self._find_tool_boundaries(text)

        if tool_index >= len(boundaries):
            return None, None

        start, end = boundaries[tool_index]
        tool_content = text[start:end]

        name_match = self.tool_name_pattern.search(tool_content)
        name = name_match.group(1) if name_match else None

        args_match = self.tool_args_pattern.search(tool_content)
        if args_match:
            try:
                args_text = self._extract_tool_args(tool_content, args_match)
                return name, args_text
            except Exception:
                remaining_content = tool_content[args_match.end():]
                args_text = remaining_content.rstrip('}').strip()
                return name, args_text

        return name, None

    def _handle_tool_name_streaming(
            self, tool_content: str,
            tool_count: int) -> Union[DeltaMessage, None]:
        """
        Handle streaming of tool names.

        Args:
            tool_content: Content containing tool calls
            tool_count: Total number of tools

        Returns:
            DeltaMessage with tool name or None if no tool to stream
        """
        next_idx = self._get_next_unsent_tool_index(tool_count)

        if next_idx == -1:
            return None

        boundaries = self._find_tool_boundaries(tool_content)
        if next_idx >= len(boundaries):
            return None

        tool_name, _ = self._get_current_tool_content(tool_content, next_idx)
        if not tool_name:
            return None

        self._set_current_tool_index(next_idx)
        sent_tools = list(self.streaming_state["sent_tools"])
        tool_ids = list(self.streaming_state["tool_ids"])

        tool_id = sent_tools[next_idx]["id"]
        tool_ids[next_idx] = tool_id
        sent_tools[next_idx]["sent_name"] = True

        self.streaming_state["sent_tools"] = sent_tools
        self.streaming_state["tool_ids"] = tool_ids

        return DeltaMessage(tool_calls=[
            DeltaToolCall(index=next_idx,
                          type="function",
                          id=tool_id,
                          function=DeltaFunctionCall(
                              name=tool_name).model_dump(exclude_none=True))
        ])

    def _handle_tool_args_streaming(
            self, tool_content: str,
            tool_count: int) -> Union[DeltaMessage, None]:
        """
        Handle streaming of tool arguments.

        Args:
            tool_content: Content containing tool calls
            tool_count: Total number of tools

        Returns:
            DeltaMessage with tool arguments or None if no arguments to stream
        """
        current_idx = self._get_current_tool_index()

        if current_idx < 0 or current_idx >= tool_count:
            return None

        tool_name, tool_args = self._get_current_tool_content(
            tool_content, current_idx)
        if not tool_name or tool_args is None:
            return None

        sent_tools = list(self.streaming_state["sent_tools"])

        if not sent_tools[current_idx]["sent_name"]:
            return None

        clean_args = self._clean_duplicate_braces(tool_args)
        sent_args = sent_tools[current_idx]["sent_arguments"]

        if clean_args != sent_args:
            if sent_args and clean_args.startswith(sent_args):
                args_delta = extract_intermediate_diff(clean_args, sent_args)
                if args_delta:
                    args_delta = self._clean_delta_braces(args_delta)
                    sent_tools[current_idx]["sent_arguments"] = clean_args
                    self.streaming_state["sent_tools"] = sent_tools

                    if clean_args.endswith('}'):
                        self._advance_to_next_tool()

                    return DeltaMessage(tool_calls=[
                        DeltaToolCall(index=current_idx,
                                      function=DeltaFunctionCall(
                                          arguments=args_delta).model_dump(
                                              exclude_none=True))
                    ])
            elif not sent_args and clean_args:
                clean_args_delta = self._clean_delta_braces(clean_args)
                sent_tools[current_idx]["sent_arguments"] = clean_args
                self.streaming_state["sent_tools"] = sent_tools

                if clean_args.endswith('}'):
                    self._advance_to_next_tool()

                return DeltaMessage(tool_calls=[
                    DeltaToolCall(index=current_idx,
                                  function=DeltaFunctionCall(
                                      arguments=clean_args_delta).model_dump(
                                          exclude_none=True))
                ])

        return None

    def _is_end_tool_calls(self, current_text: str) -> bool:
        if self.tool_call_end_token not in current_text:
            return False

        end_token_positions = []
        search_start = 0
        while True:
            pos = current_text.find(self.tool_call_end_token, search_start)
            if pos == -1:
                break
            end_token_positions.append(pos)
            search_start = pos + 1

        think_regions = []
        for match in re.finditer(self.thinking_tag_pattern,
                                 current_text,
                                 flags=re.DOTALL):
            think_regions.append((match.start(), match.end()))

        for pos in end_token_positions:
            in_think = any(pos >= t_start and pos < t_end
                           for t_start, t_end in think_regions)
            if not in_think:
                return True

        return False

    def extract_tool_calls_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
        request: ChatCompletionRequest,
    ) -> Union[DeltaMessage, None]:
        self._update_thinking_state(current_text)

        if self.in_thinking_tag:
            return DeltaMessage(content=delta_text)

        if self._should_buffer_content(delta_text):
            buffered_output = self._process_buffer(delta_text)
            return DeltaMessage(
                content=buffered_output) if buffered_output else None

        if self._is_end_tool_calls(current_text):
            return DeltaMessage(content=delta_text)

        safe_content, potential_tag = self._split_content_for_buffering(
            delta_text)
        if potential_tag:
            self.pending_buffer += potential_tag
            return DeltaMessage(content=safe_content) if safe_content else None

        processed_current_text = self.preprocess_model_output(current_text)

        if self.tool_call_start_token not in processed_current_text:
            if (self.tool_call_end_token in delta_text
                    and self.tool_call_start_token in current_text):
                return None
            if delta_text.strip(
            ) == '' and self.tool_call_start_token in current_text:
                return None
            if (self._get_current_tool_index() != -1
                    and self.tool_call_end_token in current_text):
                self._reset_streaming_state()
            return DeltaMessage(content=delta_text)

        if (self.tool_call_start_token_id is not None
                and self.tool_call_start_token_id in delta_token_ids
                and len(delta_token_ids) == 1):
            return None

        original_tool_start = self._find_tool_start_outside_thinking(
            current_text)
        if original_tool_start is None:
            return None

        content_before_tools = self._extract_content_before_tools(
            current_text, delta_text, original_tool_start)
        if content_before_tools:
            return DeltaMessage(content=content_before_tools)

        try:
            tool_content = self._extract_tool_content(current_text,
                                                      original_tool_start)
            current_tools_count = self._detect_tools_in_text(tool_content)

            if current_tools_count == 0:
                return None

            if self._get_current_tool_index() == -1:
                self._reset_streaming_state()

            self._ensure_state_arrays(current_tools_count)

            return (self._handle_tool_name_streaming(tool_content,
                                                     current_tools_count)
                    or self._handle_tool_args_streaming(
                        tool_content, current_tools_count))

        except Exception:
            logger.exception("An unexpected error occurred ",
                             "during streaming tool call handling.")
            return None

    def _find_tool_start_outside_thinking(self,
                                          current_text: str) -> Optional[int]:
        """
        Find the start position of tool calls outside of thinking tags.

        Args:
            current_text: Current text to search

        Returns:
            Position of tool call start or None if not found
        """
        search_start = 0
        while True:
            pos = current_text.find(self.tool_call_start_token, search_start)
            if pos == -1:
                return None

            think_regions = [(m.start(), m.end()) for m in re.finditer(
                r"<think>(.*?)</think>", current_text, flags=re.DOTALL)]
            in_think = any(pos >= t_start and pos < t_end
                           for t_start, t_end in think_regions)

            if not in_think:
                return pos

            search_start = pos + 1

    def _extract_content_before_tools(self, current_text: str, delta_text: str,
                                      tool_start: int) -> Optional[str]:
        """
        Extract content that appears before tool calls.

        Args:
            current_text: Current text
            delta_text: Delta text
            tool_start: Start position of tools

        Returns:
            Content before tools or None
        """
        if tool_start > 0:
            delta_start_pos = len(current_text) - len(delta_text)
            if delta_start_pos < tool_start:
                content_part = delta_text
                if delta_start_pos + len(delta_text) > tool_start:
                    content_part = delta_text[:tool_start - delta_start_pos]
                return content_part if content_part else None
        return None

    def _extract_tool_content(self, current_text: str, tool_start: int) -> str:
        """
        Extract tool content from current text starting at tool_start.

        Args:
            current_text: Current text
            tool_start: Start position of tool calls

        Returns:
            Extracted tool content
        """
        tool_content_start = tool_start + len(self.tool_call_start_token)
        tool_content = current_text[tool_content_start:]

        end_pos = tool_content.find(self.tool_call_end_token)
        if end_pos != -1:
            tool_content = tool_content[:end_pos]

        return tool_content

in_thinking_tag instance-attribute

in_thinking_tag = False

pending_buffer instance-attribute

pending_buffer = ''

streaming_state instance-attribute

streaming_state: dict[str, Any] = {
    "current_tool_index": -1,
    "tool_ids": [],
    "sent_tools": [],
}

thinking_tag_pattern instance-attribute

thinking_tag_pattern = '<think>(.*?)</think>'

tool_args_pattern instance-attribute

tool_args_pattern = compile('"arguments":\\s*')

tool_call_end_token instance-attribute

tool_call_end_token = '</tool_calls>'

tool_call_end_token_id instance-attribute

tool_call_end_token_id = get(tool_call_end_token)

tool_call_regex instance-attribute

tool_call_regex = compile(
    "<tool_calls>(.*?)</tool_calls>|<tool_calls>(.*)",
    DOTALL,
)

tool_call_start_token instance-attribute

tool_call_start_token = '<tool_calls>'

tool_call_start_token_id instance-attribute

tool_call_start_token_id = get(tool_call_start_token)

tool_name_pattern instance-attribute

tool_name_pattern = compile('"name":\\s*"([^"]+)"')

__init__

__init__(tokenizer: AnyTokenizer)
Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def __init__(self, tokenizer: AnyTokenizer):
    super().__init__(tokenizer)

    # Initialize streaming state for tracking tool call progress
    self.streaming_state: dict[str, Any] = {
        "current_tool_index": -1,  # Index of current tool being processed
        "tool_ids": [],  # List of tool call IDs
        "sent_tools": [],  # List of tools that have been sent
    }

    # Define tool call tokens and patterns
    self.tool_call_start_token = "<tool_calls>"
    self.tool_call_end_token = "</tool_calls>"
    self.tool_call_regex = re.compile(
        r"<tool_calls>(.*?)</tool_calls>|<tool_calls>(.*)", re.DOTALL)
    self.thinking_tag_pattern = r"<think>(.*?)</think>"
    self.tool_name_pattern = re.compile(r'"name":\s*"([^"]+)"')
    self.tool_args_pattern = re.compile(r'"arguments":\s*')

    # Buffer for handling partial tool calls during streaming
    self.pending_buffer = ""
    self.in_thinking_tag = False

    if not self.model_tokenizer:
        raise ValueError(
            "The model tokenizer must be passed to the ToolParser "
            "constructor during construction.")

    # Get token IDs for tool call start/end tokens
    self.tool_call_start_token_id = self.vocab.get(
        self.tool_call_start_token)
    self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)

    if (self.tool_call_start_token_id is None
            or self.tool_call_end_token_id is None):
        logger.warning(
            "Minimax Tool parser could not locate tool call start/end "
            "tokens in the tokenizer. Falling back to string matching.")

_advance_to_next_tool

_advance_to_next_tool() -> None

Advance to the next tool in the streaming sequence.

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _advance_to_next_tool(self) -> None:
    """Advance to the next tool in the streaming sequence."""
    self.streaming_state["current_tool_index"] = int(
        self.streaming_state["current_tool_index"]) + 1

_clean_delta_braces

_clean_delta_braces(delta_text: str) -> str

Clean delta text by removing excessive closing braces.

Parameters:

Name Type Description Default
delta_text str

Delta text to clean

required

Returns:

Type Description
str

Cleaned delta text

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _clean_delta_braces(self, delta_text: str) -> str:
    """
    Clean delta text by removing excessive closing braces.

    Args:
        delta_text: Delta text to clean

    Returns:
        Cleaned delta text
    """
    if not delta_text:
        return delta_text

    delta_stripped = delta_text.strip()

    if delta_stripped and all(c in '}\n\r\t ' for c in delta_stripped):
        brace_count = delta_stripped.count('}')
        if brace_count > 1:
            return '}\n' if delta_text.endswith('\n') else '}'

    return delta_text

_clean_duplicate_braces

_clean_duplicate_braces(args_text: str) -> str

Clean duplicate closing braces from arguments text.

Parameters:

Name Type Description Default
args_text str

Raw arguments text

required

Returns:

Type Description
str

Cleaned arguments text with proper JSON formatting

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _clean_duplicate_braces(self, args_text: str) -> str:
    """
    Clean duplicate closing braces from arguments text.

    Args:
        args_text: Raw arguments text

    Returns:
        Cleaned arguments text with proper JSON formatting
    """
    args_text = args_text.strip()
    if not args_text:
        return args_text

    try:
        json.loads(args_text)
        return args_text
    except json.JSONDecodeError:
        pass

    while args_text.endswith('}}'):
        candidate = args_text[:-1]
        try:
            json.loads(candidate)
            return candidate
        except json.JSONDecodeError:
            args_text = candidate

    return args_text

_detect_tools_in_text

_detect_tools_in_text(text: str) -> int

Detect the number of tools in text by counting name patterns.

Parameters:

Name Type Description Default
text str

Text to analyze

required

Returns:

Type Description
int

Number of tools detected

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _detect_tools_in_text(self, text: str) -> int:
    """
    Detect the number of tools in text by counting name patterns.

    Args:
        text: Text to analyze

    Returns:
        Number of tools detected
    """
    matches = self.tool_name_pattern.findall(text)
    return len(matches)

_ensure_state_arrays

_ensure_state_arrays(tool_count: int) -> None

Ensure state arrays have sufficient capacity for tool_count tools.

Parameters:

Name Type Description Default
tool_count int

Number of tools to prepare for

required
Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _ensure_state_arrays(self, tool_count: int) -> None:
    """
    Ensure state arrays have sufficient capacity for tool_count tools.

    Args:
        tool_count: Number of tools to prepare for
    """
    sent_tools = list(self.streaming_state["sent_tools"])
    tool_ids = list(self.streaming_state["tool_ids"])

    while len(sent_tools) < tool_count:
        sent_tools.append({
            "sent_name": False,
            "sent_arguments": "",
            "id": make_tool_call_id(),
        })

    while len(tool_ids) < tool_count:
        tool_ids.append(None)

    self.streaming_state["sent_tools"] = sent_tools
    self.streaming_state["tool_ids"] = tool_ids

_extract_content_before_tools

_extract_content_before_tools(
    current_text: str, delta_text: str, tool_start: int
) -> Optional[str]

Extract content that appears before tool calls.

Parameters:

Name Type Description Default
current_text str

Current text

required
delta_text str

Delta text

required
tool_start int

Start position of tools

required

Returns:

Type Description
Optional[str]

Content before tools or None

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _extract_content_before_tools(self, current_text: str, delta_text: str,
                                  tool_start: int) -> Optional[str]:
    """
    Extract content that appears before tool calls.

    Args:
        current_text: Current text
        delta_text: Delta text
        tool_start: Start position of tools

    Returns:
        Content before tools or None
    """
    if tool_start > 0:
        delta_start_pos = len(current_text) - len(delta_text)
        if delta_start_pos < tool_start:
            content_part = delta_text
            if delta_start_pos + len(delta_text) > tool_start:
                content_part = delta_text[:tool_start - delta_start_pos]
            return content_part if content_part else None
    return None

_extract_tool_args

_extract_tool_args(tool_content: str, args_match) -> str

Extract tool arguments from tool content.

Parameters:

Name Type Description Default
tool_content str

Tool call content

required
args_match

Regex match for arguments pattern

required

Returns:

Type Description
str

Extracted arguments as string

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _extract_tool_args(self, tool_content: str, args_match) -> str:
    """
    Extract tool arguments from tool content.

    Args:
        tool_content: Tool call content
        args_match: Regex match for arguments pattern

    Returns:
        Extracted arguments as string
    """
    args_start_pos = args_match.end()
    remaining_content = tool_content[args_start_pos:]

    if remaining_content.strip().startswith('{'):
        depth = 0
        for i, char in enumerate(remaining_content):
            if char == '{':
                depth += 1
            elif char == '}':
                depth -= 1
                if depth == 0:
                    return remaining_content[:i + 1]
    else:
        args_end = remaining_content.find('}')
        if args_end > 0:
            return remaining_content[:args_end].strip()

    return remaining_content.rstrip('}').strip()

_extract_tool_content

_extract_tool_content(
    current_text: str, tool_start: int
) -> str

Extract tool content from current text starting at tool_start.

Parameters:

Name Type Description Default
current_text str

Current text

required
tool_start int

Start position of tool calls

required

Returns:

Type Description
str

Extracted tool content

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _extract_tool_content(self, current_text: str, tool_start: int) -> str:
    """
    Extract tool content from current text starting at tool_start.

    Args:
        current_text: Current text
        tool_start: Start position of tool calls

    Returns:
        Extracted tool content
    """
    tool_content_start = tool_start + len(self.tool_call_start_token)
    tool_content = current_text[tool_content_start:]

    end_pos = tool_content.find(self.tool_call_end_token)
    if end_pos != -1:
        tool_content = tool_content[:end_pos]

    return tool_content

_find_tool_boundaries

_find_tool_boundaries(text: str) -> list[tuple[int, int]]

Find the boundaries of tool calls in text.

Parameters:

Name Type Description Default
text str

Text to analyze

required

Returns:

Type Description
list[tuple[int, int]]

List of (start, end) positions for tool calls

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _find_tool_boundaries(self, text: str) -> list[tuple[int, int]]:
    """
    Find the boundaries of tool calls in text.

    Args:
        text: Text to analyze

    Returns:
        List of (start, end) positions for tool calls
    """
    boundaries = []
    i = 0
    while i < len(text):
        if text[i] == '{':
            start = i
            depth = 0
            has_name = False
            has_arguments = False

            while i < len(text):
                if text[i] == '{':
                    depth += 1
                elif text[i] == '}':
                    depth -= 1
                    if depth == 0:
                        end = i + 1
                        segment = text[start:end]
                        if '"name"' in segment and '"arguments"' in segment:
                            boundaries.append((start, end))
                        break

                if not has_name and '"name"' in text[start:i + 1]:
                    has_name = True
                if not has_arguments and '"arguments"' in text[start:i +
                                                               1]:
                    has_arguments = True

                i += 1

            if depth > 0 and has_name:
                boundaries.append((start, i))
        else:
            i += 1
    return boundaries

_find_tool_start_outside_thinking

_find_tool_start_outside_thinking(
    current_text: str,
) -> Optional[int]

Find the start position of tool calls outside of thinking tags.

Parameters:

Name Type Description Default
current_text str

Current text to search

required

Returns:

Type Description
Optional[int]

Position of tool call start or None if not found

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _find_tool_start_outside_thinking(self,
                                      current_text: str) -> Optional[int]:
    """
    Find the start position of tool calls outside of thinking tags.

    Args:
        current_text: Current text to search

    Returns:
        Position of tool call start or None if not found
    """
    search_start = 0
    while True:
        pos = current_text.find(self.tool_call_start_token, search_start)
        if pos == -1:
            return None

        think_regions = [(m.start(), m.end()) for m in re.finditer(
            r"<think>(.*?)</think>", current_text, flags=re.DOTALL)]
        in_think = any(pos >= t_start and pos < t_end
                       for t_start, t_end in think_regions)

        if not in_think:
            return pos

        search_start = pos + 1

_get_current_tool_content

_get_current_tool_content(
    text: str, tool_index: int
) -> tuple[Optional[str], Optional[str]]

Get the content of a specific tool by index.

Parameters:

Name Type Description Default
text str

Text containing tool calls

required
tool_index int

Index of tool to extract

required

Returns:

Type Description
tuple[Optional[str], Optional[str]]

Tuple of (tool_name, tool_arguments) or (None, None) if not found

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _get_current_tool_content(
        self, text: str,
        tool_index: int) -> tuple[Optional[str], Optional[str]]:
    """
    Get the content of a specific tool by index.

    Args:
        text: Text containing tool calls
        tool_index: Index of tool to extract

    Returns:
        Tuple of (tool_name, tool_arguments) or (None, None) if not found
    """
    boundaries = self._find_tool_boundaries(text)

    if tool_index >= len(boundaries):
        return None, None

    start, end = boundaries[tool_index]
    tool_content = text[start:end]

    name_match = self.tool_name_pattern.search(tool_content)
    name = name_match.group(1) if name_match else None

    args_match = self.tool_args_pattern.search(tool_content)
    if args_match:
        try:
            args_text = self._extract_tool_args(tool_content, args_match)
            return name, args_text
        except Exception:
            remaining_content = tool_content[args_match.end():]
            args_text = remaining_content.rstrip('}').strip()
            return name, args_text

    return name, None

_get_current_tool_index

_get_current_tool_index() -> int

Get the current tool index.

Returns:

Type Description
int

Current tool index

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _get_current_tool_index(self) -> int:
    """
    Get the current tool index.

    Returns:
        Current tool index
    """
    return int(self.streaming_state["current_tool_index"])

_get_next_unsent_tool_index

_get_next_unsent_tool_index(tool_count: int) -> int

Get the index of the next unsent tool.

Parameters:

Name Type Description Default
tool_count int

Total number of tools

required

Returns:

Type Description
int

Index of next unsent tool, or -1 if all tools sent

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _get_next_unsent_tool_index(self, tool_count: int) -> int:
    """
    Get the index of the next unsent tool.

    Args:
        tool_count: Total number of tools

    Returns:
        Index of next unsent tool, or -1 if all tools sent
    """
    sent_tools = list(self.streaming_state["sent_tools"])
    for i in range(tool_count):
        if i < len(sent_tools):
            if not sent_tools[i]["sent_name"]:
                return i
        else:
            return i
    return -1

_handle_tool_args_streaming

_handle_tool_args_streaming(
    tool_content: str, tool_count: int
) -> Union[DeltaMessage, None]

Handle streaming of tool arguments.

Parameters:

Name Type Description Default
tool_content str

Content containing tool calls

required
tool_count int

Total number of tools

required

Returns:

Type Description
Union[DeltaMessage, None]

DeltaMessage with tool arguments or None if no arguments to stream

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _handle_tool_args_streaming(
        self, tool_content: str,
        tool_count: int) -> Union[DeltaMessage, None]:
    """
    Handle streaming of tool arguments.

    Args:
        tool_content: Content containing tool calls
        tool_count: Total number of tools

    Returns:
        DeltaMessage with tool arguments or None if no arguments to stream
    """
    current_idx = self._get_current_tool_index()

    if current_idx < 0 or current_idx >= tool_count:
        return None

    tool_name, tool_args = self._get_current_tool_content(
        tool_content, current_idx)
    if not tool_name or tool_args is None:
        return None

    sent_tools = list(self.streaming_state["sent_tools"])

    if not sent_tools[current_idx]["sent_name"]:
        return None

    clean_args = self._clean_duplicate_braces(tool_args)
    sent_args = sent_tools[current_idx]["sent_arguments"]

    if clean_args != sent_args:
        if sent_args and clean_args.startswith(sent_args):
            args_delta = extract_intermediate_diff(clean_args, sent_args)
            if args_delta:
                args_delta = self._clean_delta_braces(args_delta)
                sent_tools[current_idx]["sent_arguments"] = clean_args
                self.streaming_state["sent_tools"] = sent_tools

                if clean_args.endswith('}'):
                    self._advance_to_next_tool()

                return DeltaMessage(tool_calls=[
                    DeltaToolCall(index=current_idx,
                                  function=DeltaFunctionCall(
                                      arguments=args_delta).model_dump(
                                          exclude_none=True))
                ])
        elif not sent_args and clean_args:
            clean_args_delta = self._clean_delta_braces(clean_args)
            sent_tools[current_idx]["sent_arguments"] = clean_args
            self.streaming_state["sent_tools"] = sent_tools

            if clean_args.endswith('}'):
                self._advance_to_next_tool()

            return DeltaMessage(tool_calls=[
                DeltaToolCall(index=current_idx,
                              function=DeltaFunctionCall(
                                  arguments=clean_args_delta).model_dump(
                                      exclude_none=True))
            ])

    return None

_handle_tool_name_streaming

_handle_tool_name_streaming(
    tool_content: str, tool_count: int
) -> Union[DeltaMessage, None]

Handle streaming of tool names.

Parameters:

Name Type Description Default
tool_content str

Content containing tool calls

required
tool_count int

Total number of tools

required

Returns:

Type Description
Union[DeltaMessage, None]

DeltaMessage with tool name or None if no tool to stream

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _handle_tool_name_streaming(
        self, tool_content: str,
        tool_count: int) -> Union[DeltaMessage, None]:
    """
    Handle streaming of tool names.

    Args:
        tool_content: Content containing tool calls
        tool_count: Total number of tools

    Returns:
        DeltaMessage with tool name or None if no tool to stream
    """
    next_idx = self._get_next_unsent_tool_index(tool_count)

    if next_idx == -1:
        return None

    boundaries = self._find_tool_boundaries(tool_content)
    if next_idx >= len(boundaries):
        return None

    tool_name, _ = self._get_current_tool_content(tool_content, next_idx)
    if not tool_name:
        return None

    self._set_current_tool_index(next_idx)
    sent_tools = list(self.streaming_state["sent_tools"])
    tool_ids = list(self.streaming_state["tool_ids"])

    tool_id = sent_tools[next_idx]["id"]
    tool_ids[next_idx] = tool_id
    sent_tools[next_idx]["sent_name"] = True

    self.streaming_state["sent_tools"] = sent_tools
    self.streaming_state["tool_ids"] = tool_ids

    return DeltaMessage(tool_calls=[
        DeltaToolCall(index=next_idx,
                      type="function",
                      id=tool_id,
                      function=DeltaFunctionCall(
                          name=tool_name).model_dump(exclude_none=True))
    ])

_is_end_tool_calls

_is_end_tool_calls(current_text: str) -> bool
Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _is_end_tool_calls(self, current_text: str) -> bool:
    if self.tool_call_end_token not in current_text:
        return False

    end_token_positions = []
    search_start = 0
    while True:
        pos = current_text.find(self.tool_call_end_token, search_start)
        if pos == -1:
            break
        end_token_positions.append(pos)
        search_start = pos + 1

    think_regions = []
    for match in re.finditer(self.thinking_tag_pattern,
                             current_text,
                             flags=re.DOTALL):
        think_regions.append((match.start(), match.end()))

    for pos in end_token_positions:
        in_think = any(pos >= t_start and pos < t_end
                       for t_start, t_end in think_regions)
        if not in_think:
            return True

    return False

_is_potential_tag_start

_is_potential_tag_start(text: str) -> bool

Check if text might be the start of a tool call tag.

Parameters:

Name Type Description Default
text str

Text to check

required

Returns:

Type Description
bool

True if text could be the start of a tool call tag

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _is_potential_tag_start(self, text: str) -> bool:
    """
    Check if text might be the start of a tool call tag.

    Args:
        text: Text to check

    Returns:
        True if text could be the start of a tool call tag
    """
    for tag in [self.tool_call_start_token, self.tool_call_end_token]:
        if any(
                tag.startswith(text[-i:])
                for i in range(1, min(len(text) + 1, len(tag)))):
            return True
    return False

_process_buffer

_process_buffer(new_content: str) -> str

Process buffered content and return output content.

Parameters:

Name Type Description Default
new_content str

New content to add to buffer

required

Returns:

Type Description
str

Processed output content

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _process_buffer(self, new_content: str) -> str:
    """
    Process buffered content and return output content.

    Args:
        new_content: New content to add to buffer

    Returns:
        Processed output content
    """
    self.pending_buffer += new_content
    output_content = ""

    if self.in_thinking_tag:
        output_content = self.pending_buffer
        self.pending_buffer = ""
        return output_content

    while self.pending_buffer:
        start_pos = self.pending_buffer.find(self.tool_call_start_token)
        end_pos = self.pending_buffer.find(self.tool_call_end_token)

        if start_pos != -1 and (end_pos == -1 or start_pos < end_pos):
            tag_pos, tag_len = start_pos, len(self.tool_call_start_token)
        elif end_pos != -1:
            tag_pos, tag_len = end_pos, len(self.tool_call_end_token)
        else:
            if self._is_potential_tag_start(self.pending_buffer):
                break
            output_content += self.pending_buffer
            self.pending_buffer = ""
            break

        output_content += self.pending_buffer[:tag_pos]
        self.pending_buffer = self.pending_buffer[tag_pos + tag_len:]

    return output_content

_reset_streaming_state

_reset_streaming_state() -> None

Reset the streaming state to initial values.

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _reset_streaming_state(self) -> None:
    """Reset the streaming state to initial values."""
    self.streaming_state = {
        "current_tool_index": -1,
        "tool_ids": [],
        "sent_tools": [],
    }

_set_current_tool_index

_set_current_tool_index(index: int) -> None

Set the current tool index.

Parameters:

Name Type Description Default
index int

Tool index to set

required
Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _set_current_tool_index(self, index: int) -> None:
    """
    Set the current tool index.

    Args:
        index: Tool index to set
    """
    self.streaming_state["current_tool_index"] = index

_should_buffer_content

_should_buffer_content(delta_text: str) -> bool

Determine if content should be buffered for later processing.

Parameters:

Name Type Description Default
delta_text str

Delta text to check

required

Returns:

Type Description
bool

True if content should be buffered

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _should_buffer_content(self, delta_text: str) -> bool:
    """
    Determine if content should be buffered for later processing.

    Args:
        delta_text: Delta text to check

    Returns:
        True if content should be buffered
    """
    if self.in_thinking_tag:
        return False
    return bool(self.pending_buffer
                or self.tool_call_start_token in delta_text
                or self.tool_call_end_token in delta_text
                or delta_text.startswith('<'))

_split_content_for_buffering

_split_content_for_buffering(
    delta_text: str,
) -> tuple[str, str]

Split delta text into safe content and potential tag content.

Parameters:

Name Type Description Default
delta_text str

Delta text to split

required

Returns:

Type Description
tuple[str, str]

Tuple of (safe_content, potential_tag_content)

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _split_content_for_buffering(self, delta_text: str) -> tuple[str, str]:
    """
    Split delta text into safe content and potential tag content.

    Args:
        delta_text: Delta text to split

    Returns:
        Tuple of (safe_content, potential_tag_content)
    """
    if self.in_thinking_tag:
        return delta_text, ""

    for tag in [self.tool_call_start_token, self.tool_call_end_token]:
        for i in range(1, len(tag)):
            tag_prefix = tag[:i]
            pos = delta_text.rfind(tag_prefix)
            if pos != -1 and tag.startswith(delta_text[pos:]):
                return delta_text[:pos], delta_text[pos:]
    return delta_text, ""

_update_thinking_state

_update_thinking_state(text: str) -> None

Update the thinking tag state based on text content.

Parameters:

Name Type Description Default
text str

Text to analyze for thinking tags

required
Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def _update_thinking_state(self, text: str) -> None:
    """
    Update the thinking tag state based on text content.

    Args:
        text: Text to analyze for thinking tags
    """
    open_count = text.count("<think>")
    close_count = text.count("</think>")
    self.in_thinking_tag = open_count > close_count or (
        open_count == close_count and text.endswith("</think>"))

extract_tool_calls

extract_tool_calls(
    model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation

Extract tool calls from model output for non-streaming mode.

Parameters:

Name Type Description Default
model_output str

Complete model output

required
request ChatCompletionRequest

Chat completion request

required

Returns:

Type Description
ExtractedToolCallInformation

ExtractedToolCallInformation containing tool calls and content

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def extract_tool_calls(
    self,
    model_output: str,
    request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
    """
    Extract tool calls from model output for non-streaming mode.

    Args:
        model_output: Complete model output
        request: Chat completion request

    Returns:
        ExtractedToolCallInformation containing tool calls and content
    """
    processed_output = self.preprocess_model_output(model_output)

    if self.tool_call_start_token not in processed_output:
        return ExtractedToolCallInformation(tools_called=False,
                                            tool_calls=[],
                                            content=model_output)

    try:
        function_call_tuples = self.tool_call_regex.findall(
            processed_output)

        raw_function_calls = []
        for match in function_call_tuples:
            tool_call_content = match[0] if match[0] else match[1]
            if tool_call_content.strip():
                lines = tool_call_content.strip().split('\n')
                for line in lines:
                    line = line.strip()
                    if line and line.startswith('{') and line.endswith(
                            '}'):
                        try:
                            parsed_call = json.loads(line)
                            raw_function_calls.append(parsed_call)
                        except json.JSONDecodeError:
                            continue

        tool_calls = []
        for function_call in raw_function_calls:
            if "name" in function_call and "arguments" in function_call:
                tool_calls.append(
                    ToolCall(type="function",
                             function=FunctionCall(
                                 name=function_call["name"],
                                 arguments=json.dumps(
                                     function_call["arguments"],
                                     ensure_ascii=False))))

        processed_pos = processed_output.find(self.tool_call_start_token)
        if processed_pos != -1:
            processed_content = processed_output[:processed_pos].strip()

            if processed_content:
                lines = processed_content.split('\n')
                for line in reversed(lines):
                    line = line.strip()
                    if line:
                        pos = model_output.find(line)
                        if pos != -1:
                            content = model_output[:pos + len(line)]
                            break
                else:
                    content = ""
            else:
                content = ""
        else:
            content = model_output

        return ExtractedToolCallInformation(
            tools_called=len(tool_calls) > 0,
            tool_calls=tool_calls,
            content=content.strip() if content.strip() else None)

    except Exception:
        logger.exception(
            "An unexpected error occurred during tool call extraction.")
        return ExtractedToolCallInformation(tools_called=False,
                                            tool_calls=[],
                                            content=model_output)

extract_tool_calls_streaming

extract_tool_calls_streaming(
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]
Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def extract_tool_calls_streaming(
    self,
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
    self._update_thinking_state(current_text)

    if self.in_thinking_tag:
        return DeltaMessage(content=delta_text)

    if self._should_buffer_content(delta_text):
        buffered_output = self._process_buffer(delta_text)
        return DeltaMessage(
            content=buffered_output) if buffered_output else None

    if self._is_end_tool_calls(current_text):
        return DeltaMessage(content=delta_text)

    safe_content, potential_tag = self._split_content_for_buffering(
        delta_text)
    if potential_tag:
        self.pending_buffer += potential_tag
        return DeltaMessage(content=safe_content) if safe_content else None

    processed_current_text = self.preprocess_model_output(current_text)

    if self.tool_call_start_token not in processed_current_text:
        if (self.tool_call_end_token in delta_text
                and self.tool_call_start_token in current_text):
            return None
        if delta_text.strip(
        ) == '' and self.tool_call_start_token in current_text:
            return None
        if (self._get_current_tool_index() != -1
                and self.tool_call_end_token in current_text):
            self._reset_streaming_state()
        return DeltaMessage(content=delta_text)

    if (self.tool_call_start_token_id is not None
            and self.tool_call_start_token_id in delta_token_ids
            and len(delta_token_ids) == 1):
        return None

    original_tool_start = self._find_tool_start_outside_thinking(
        current_text)
    if original_tool_start is None:
        return None

    content_before_tools = self._extract_content_before_tools(
        current_text, delta_text, original_tool_start)
    if content_before_tools:
        return DeltaMessage(content=content_before_tools)

    try:
        tool_content = self._extract_tool_content(current_text,
                                                  original_tool_start)
        current_tools_count = self._detect_tools_in_text(tool_content)

        if current_tools_count == 0:
            return None

        if self._get_current_tool_index() == -1:
            self._reset_streaming_state()

        self._ensure_state_arrays(current_tools_count)

        return (self._handle_tool_name_streaming(tool_content,
                                                 current_tools_count)
                or self._handle_tool_args_streaming(
                    tool_content, current_tools_count))

    except Exception:
        logger.exception("An unexpected error occurred ",
                         "during streaming tool call handling.")
        return None

preprocess_model_output

preprocess_model_output(model_output: str) -> str

Preprocess model output by removing tool calls from thinking tags.

Parameters:

Name Type Description Default
model_output str

Raw model output string

required

Returns:

Type Description
str

Preprocessed model output with tool calls removed from thinking tags

Source code in vllm/entrypoints/openai/tool_parsers/minimax_tool_parser.py
def preprocess_model_output(self, model_output: str) -> str:
    """
    Preprocess model output by removing tool calls from thinking tags.

    Args:
        model_output: Raw model output string

    Returns:
        Preprocessed model output with tool calls removed from thinking tags
    """

    def remove_tool_calls_from_think(match):
        think_content = match.group(1)
        cleaned_content = re.sub(r"<tool_calls>.*?</tool_calls>",
                                 "",
                                 think_content,
                                 flags=re.DOTALL)
        return f"<think>{cleaned_content}</think>"

    return re.sub(self.thinking_tag_pattern,
                  remove_tool_calls_from_think,
                  model_output,
                  flags=re.DOTALL)