vllm.model_executor.layers.fused_moe.moe_permute_unpermute
_moe_permute ¶
_moe_permute(
curr_hidden_states: Tensor,
a1q_scale: Optional[Tensor],
curr_topk_ids: Tensor,
global_num_experts: int,
expert_map: Optional[Tensor],
block_m: int,
) -> tuple[
Tensor, Optional[Tensor], Tensor, Tensor, Tensor
]
Determine the sorted_token_ids, expert_ids for the given problem size. Permute the hidden states and scales according to sorted_token_ids
.
Source code in vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py
_moe_unpermute_and_reduce ¶
_moe_unpermute_and_reduce(
out: Tensor,
curr_hidden: Tensor,
inv_perm: Optional[Tensor],
topk_weight: Tensor,
apply_router_weight_on_input: bool,
) -> None
Unpermute the final result and apply topk_weights, then perform the final reduction on the hidden states.
Source code in vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py
moe_permute ¶
moe_permute(
hidden_states: Tensor,
a1q_scale: Optional[Tensor],
topk_ids: Tensor,
n_expert: int,
n_local_expert: int = -1,
expert_map: Optional[Tensor] = None,
align_block_size: Optional[int] = None,
fill_invalid_expert: int = -1,
permuted_hidden_states: Optional[Tensor] = None,
) -> tuple[
Tensor, Optional[Tensor], Tensor, Tensor, Tensor
]
This function expands and permutes activation to gather uncontinuous tokens for each expert. Parameters: - hidden_states (torch.Tensor): The input tensor to the MoE layer. - a1q_scale (Optional[torch.Tensor]): quant scale for hidden_states - topk_ids (torch.Tensor): topk expert route id for each token. - n_expert (int): The number of expert. - n_local_expert (int): The number of expert in current EP rank. - expert_map (Optional[torch.Tensor]): A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - align_block_size (Optional[int]): align group gemm block size for deepgemm - fill_invalid_expert(int): fill expert id in m_indices for invalid expert to workaround DeepGemm unsupported -1 in m_indices - permuted_hidden_states (Optional[torch.Tensor]): Optional output tensor. If None, the output tensor will be created in this function. Returns: - permuted_hidden_states (torch.Tensor): permuted activation. - a1q_scale (Optional[torch.Tensor]): permuted quant scale for hidden_states if original scale not per-tensor scaling - expert_first_token_offset (torch.Tensor): offset of the first token of each expert for standard grouped gemm. if enable 'align_block_size' expert_first_token_offset will align up to 'align_block_size'. - inv_permuted_idx (torch.Tensor): idx map for moe_unpermute. - permuted_idx (torch.Tensor): idx map from hidden to permuted_hidden. - m_indices: m_indices for grouped gemm in deepgemm,m_indices[i]
records the group which the j-th row of the LHS belong to.`
Source code in vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
moe_permute_unpermute_supported ¶
moe_unpermute ¶
moe_unpermute(
out: Tensor,
permuted_hidden_states: Tensor,
topk_weights: Tensor,
inv_permuted_idx: Tensor,
expert_first_token_offset: Optional[Tensor] = None,
) -> None
This function expands and permutes activation to gathering uncontinuous tokens for each expert. Parameters: - out (torch.Tensor): output tensor - permuted_hidden_states (torch.Tensor): permuted activation. - topk_weights (torch.Tensor): topk expert route weight for each token. - inv_permuted_idx (torch.Tensor): row idx map for moe_unpermute. - expert_first_token_offset (Optional[torch.Tensor]): offset of the first token of each expert for grouped gemm. Returns: - hidden_states (torch.Tensor): The reduced and unpermuted activation tensor.