vllm.model_executor.layers.pooler
PoolingFn module-attribute
¶
PoolingFn = Callable[
[Union[Tensor, list[Tensor]], PoolingMetadata],
Union[Tensor, list[Tensor]],
]
AllPool ¶
Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
forward_all ¶
Source code in vllm/model_executor/layers/pooler.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
BasePoolerActivation ¶
Source code in vllm/model_executor/layers/pooler.py
forward abstractmethod
¶
Source code in vllm/model_executor/layers/pooler.py
CLSPool ¶
Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
forward_all ¶
Source code in vllm/model_executor/layers/pooler.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
ClassifierPooler ¶
Bases: Pooler
A pooling layer for classification tasks.
This layer does the following: 1. Applies a classification layer to the hidden states. 2. Optionally applies a pooler layer. 3. Applies an activation function to the output.
Source code in vllm/model_executor/layers/pooler.py
__init__ ¶
__init__(
pooling: PoolingFn,
classifier: Optional[ClassifierFn],
act_fn: Optional[PoolerActivation] = None,
) -> None
Source code in vllm/model_executor/layers/pooler.py
act_fn_for_cross_encoder staticmethod
¶
act_fn_for_cross_encoder(config: ModelConfig)
act_fn_for_seq_cls staticmethod
¶
act_fn_for_seq_cls(config: ModelConfig)
forward ¶
forward(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
DispatchPooler ¶
Bases: Pooler
Dispatches calls to a sub-pooler based on the pooling task.
Source code in vllm/model_executor/layers/pooler.py
__init__ ¶
__init__(
poolers_by_task: Mapping[PoolingTask, Pooler],
) -> None
Source code in vllm/model_executor/layers/pooler.py
forward ¶
forward(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
EmbeddingPoolerHead ¶
Bases: PoolerHead
Source code in vllm/model_executor/layers/pooler.py
projector instance-attribute
¶
projector = (
_load_st_projector(model_config)
if vllm_config
else None
)
__init__ ¶
Source code in vllm/model_executor/layers/pooler.py
forward ¶
forward(
pooled_data: Union[list[Tensor], Tensor],
pooling_metadata: PoolingMetadata,
)
Source code in vllm/model_executor/layers/pooler.py
LambdaPoolerActivation ¶
LastPool ¶
Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
forward_all ¶
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
MeanPool ¶
Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
forward_all ¶
Source code in vllm/model_executor/layers/pooler.py
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
Pooler ¶
The interface required for all poolers used in pooling models in vLLM.
Source code in vllm/model_executor/layers/pooler.py
for_classify staticmethod
¶
for_classify(
pooler_config: PoolerConfig,
classifier: Optional[ClassifierFn],
)
Source code in vllm/model_executor/layers/pooler.py
for_embed staticmethod
¶
for_embed(pooler_config: PoolerConfig)
for_encode staticmethod
¶
for_encode(pooler_config: PoolerConfig)
Source code in vllm/model_executor/layers/pooler.py
forward abstractmethod
¶
forward(
hidden_states: Union[list[Tensor], Tensor],
pooling_metadata: PoolingMetadata,
) -> PoolerOutput
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
Construct the updated pooling parameters to use for a supported task.
get_supported_tasks abstractmethod
¶
get_supported_tasks() -> Set[PoolingTask]
PoolerActivation ¶
Bases: BasePoolerActivation
Source code in vllm/model_executor/layers/pooler.py
PoolerClassify ¶
Bases: PoolerActivation
Source code in vllm/model_executor/layers/pooler.py
forward_chunk ¶
Source code in vllm/model_executor/layers/pooler.py
PoolerHead ¶
Bases: Module
Source code in vllm/model_executor/layers/pooler.py
__init__ ¶
__init__(activation: PoolerActivation) -> None
PoolerIdentity ¶
Bases: PoolerActivation
Source code in vllm/model_executor/layers/pooler.py
PoolerMultiLabelClassify ¶
Bases: PoolerActivation
Source code in vllm/model_executor/layers/pooler.py
PoolerNormalize ¶
Bases: PoolerActivation
Source code in vllm/model_executor/layers/pooler.py
PoolerScore ¶
PoolingMethod ¶
Source code in vllm/model_executor/layers/pooler.py
forward ¶
Source code in vllm/model_executor/layers/pooler.py
forward_all abstractmethod
¶
from_pooling_type staticmethod
¶
from_pooling_type(
pooling_type: PoolingType,
) -> PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
PoolingParamsUpdate dataclass
¶
Source code in vllm/model_executor/layers/pooler.py
requires_token_ids class-attribute
instance-attribute
¶
requires_token_ids: bool = False
Set this flag to enable get_prompt_token_ids
for your pooler.
apply ¶
apply(params: PoolingParams) -> None
PoolingType ¶
Bases: IntEnum
Enumeration for different types of pooling methods.
Source code in vllm/model_executor/layers/pooler.py
ResolvedPoolingConfig dataclass
¶
Source code in vllm/model_executor/layers/pooler.py
from_config classmethod
¶
from_config(
task: PoolingTask, pooler_config: PoolerConfig
) -> ResolvedPoolingConfig
Source code in vllm/model_executor/layers/pooler.py
RewardPoolerHead ¶
Bases: PoolerHead
Source code in vllm/model_executor/layers/pooler.py
__init__ ¶
forward ¶
forward(
pooled_data: Union[list[Tensor], Tensor],
pooling_metadata: PoolingMetadata,
)
Source code in vllm/model_executor/layers/pooler.py
SimplePooler ¶
Bases: Pooler
A layer that pools specific information from hidden states.
This layer does the following: 1. Extracts specific tokens or aggregates data based on pooling method. 2. Normalizes output if specified. 3. Returns structured results as PoolerOutput
.
Source code in vllm/model_executor/layers/pooler.py
__init__ ¶
__init__(pooling: PoolingMethod, head: PoolerHead) -> None
forward ¶
forward(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
from_config classmethod
¶
from_config(
pooler_config: ResolvedPoolingConfig,
) -> SimplePooler
Source code in vllm/model_executor/layers/pooler.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
StepPooler ¶
Bases: Pooler
Source code in vllm/model_executor/layers/pooler.py
__init__ ¶
extract_states ¶
extract_states(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> Union[list[Tensor], Tensor]
Source code in vllm/model_executor/layers/pooler.py
forward ¶
forward(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
build_output ¶
build_output(
all_data: Union[Tensor, list[Tensor]],
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
get_classification_activation_function ¶
Source code in vllm/model_executor/layers/pooler.py
get_cross_encoder_activation_function ¶
Source code in vllm/model_executor/layers/pooler.py
get_pooling_params ¶
get_pooling_params(
pooling_metadata: PoolingMetadata,
) -> list[PoolingParams]
Source code in vllm/model_executor/layers/pooler.py
get_prompt_lens ¶
get_prompt_lens(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> Tensor
Source code in vllm/model_executor/layers/pooler.py
get_prompt_token_ids ¶
get_prompt_token_ids(
pooling_metadata: PoolingMetadata,
) -> list[Tensor]
Source code in vllm/model_executor/layers/pooler.py
get_tasks ¶
get_tasks(
pooling_metadata: PoolingMetadata,
) -> list[PoolingTask]