@CustomOp.register("rotary_embedding")
class RotaryEmbedding(CustomOp):
"""Original rotary positional embedding."""
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: float,
is_neox_style: bool,
dtype: torch.dtype,
) -> None:
super().__init__()
self.head_size = head_size
self.rotary_dim = rotary_dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.is_neox_style = is_neox_style
self.dtype = dtype
cache = self._compute_cos_sin_cache()
cache = cache.to(dtype)
self.cos_sin_cache: torch.Tensor
self.register_buffer("cos_sin_cache", cache, persistent=False)
def _compute_inv_freq(self, base: float) -> torch.Tensor:
"""Compute the inverse frequency."""
# NOTE(woosuk): To exactly match the HF implementation, we need to
# use CPU to compute the cache and then move it to GPU. However, we
# create the cache on GPU for faster initialization. This may cause
# a slight numerical difference between the HF implementation and ours.
inv_freq = 1.0 / (base**(torch.arange(
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
return inv_freq
def _compute_cos_sin_cache(self) -> torch.Tensor:
"""Compute the cos and sin cache."""
inv_freq = self._compute_inv_freq(self.base)
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1)
return cache
def forward_native(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
offsets: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""A PyTorch-native implementation of forward()."""
if offsets is not None:
positions = positions + offsets
positions = positions.flatten()
num_tokens = positions.shape[0]
cos_sin = self.cos_sin_cache.index_select(0, positions)
cos, sin = cos_sin.chunk(2, dim=-1)
query_shape = query.shape
query = query.view(num_tokens, -1, self.head_size)
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
query_rot = apply_rotary_emb_torch(query_rot, cos, sin,
self.is_neox_style)
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
# key may be None in some cases, e.g. cross-layer KV sharing
if key is not None:
key_shape = key.shape
key = key.view(num_tokens, -1, self.head_size)
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
key_rot = apply_rotary_emb_torch(key_rot, cos, sin,
self.is_neox_style)
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
def forward_cuda(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
offsets: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
from vllm import _custom_ops as ops
# __setattr__ in nn.Module (called by `self.cos_sin_cache = ...`)
# is expensive, so avoid calling it if possible
if self.cos_sin_cache.device != query.device or \
self.cos_sin_cache.dtype != query.dtype:
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
dtype=query.dtype)
# ops.rotary_embedding()/batched_rotary_embedding()
# are in-place operations that update the query and key tensors.
if offsets is not None:
ops.batched_rotary_embedding(positions, query, key, self.head_size,
self.cos_sin_cache,
self.is_neox_style, self.rotary_dim,
offsets)
else:
ops.rotary_embedding(positions, query, key, self.head_size,
self.cos_sin_cache, self.is_neox_style)
return query, key
def forward_xpu(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
offsets: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
from vllm._ipex_ops import ipex_ops as ops
self.cos_sin_cache = self.cos_sin_cache.to(positions.device,
dtype=query.dtype)
# ops.rotary_embedding()/batched_rotary_embedding()
# are in-place operations that update the query and key tensors.
if key is None:
# XPU kernel doesn't support key=None so fall back to native impl
# TODO(sarckk): add support for optional key in
# ipex.llm.functional.rotary_embedding_batched
return self.forward_native(positions, query, key, offsets)
else:
if offsets is not None:
ops.batched_rotary_embedding(positions, query, key,
self.head_size,
self.cos_sin_cache,
self.is_neox_style,
self.rotary_dim, offsets)
else:
ops.rotary_embedding(positions, query, key, self.head_size,
self.cos_sin_cache, self.is_neox_style)
return query, key
def forward_neuron(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor] = None,
offsets: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
def _apply_rotary_emb_neuron(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
is_neox_style: bool,
) -> torch.Tensor:
cos = cos.unsqueeze(-2).to(x.dtype)
sin = sin.unsqueeze(-2).to(x.dtype)
if is_neox_style:
x1, x2 = torch.chunk(x, 2, dim=-1)
else:
# x1 = x[..., ::2]
# x2 = x[..., 1::2]
d = x.shape[-1] // 2
x_reshaped = x.view(-1, x.shape[-1])
x1 = x_reshaped[:, ::2].view(*x.shape[:-1], d)
x2 = x_reshaped[:, 1::2].view(*x.shape[:-1], d)
o1 = x1 * cos - x2 * sin
o2 = x2 * cos + x1 * sin
if is_neox_style:
return torch.cat((o1, o2), dim=-1)
else:
return torch.stack((o1, o2), dim=-1).flatten(-2)
if offsets is not None:
positions = positions + offsets
self.cos_sin_cache = self.cos_sin_cache.to(query.device,
dtype=query.dtype)
positions = positions.flatten()
num_tokens = positions.shape[0]
cos_sin = self.cos_sin_cache.index_select(0, positions)
cos, sin = cos_sin.chunk(2, dim=-1)
query_shape = query.shape
query = query.view(num_tokens, -1, self.head_size)
if key is not None:
key_shape = key.shape
key = key.view(num_tokens, -1, self.head_size)
if self.rotary_dim == self.head_size:
query = apply_rotary_emb_dispatch(query, cos, sin,
self.is_neox_style)
query = query.reshape(query_shape)
if key is not None:
key = apply_rotary_emb_dispatch(key, cos, sin,
self.is_neox_style)
key = key.reshape(key_shape)
else:
head_size = query.shape[-1]
query_reshaped = query.view(-1, head_size)
query_pass = query_reshaped[:, self.rotary_dim:].view(
*query.shape[:-1], head_size - self.rotary_dim)
query_rot = query_reshaped[:, :self.rotary_dim].view(
*query.shape[:-1], self.rotary_dim)
query_rot = _apply_rotary_emb_neuron(query_rot, cos, sin,
self.is_neox_style)
query = torch.cat((query_rot, query_pass),
dim=-1).reshape(query_shape)
if key is not None:
key_reshaped = key.view(-1, head_size)
key_pass = key_reshaped[:, self.rotary_dim:].view(
*key.shape[:-1], head_size - self.rotary_dim)
key_rot = key_reshaped[:, :self.rotary_dim].view(
*key.shape[:-1], self.rotary_dim)
key_rot = _apply_rotary_emb_neuron(key_rot, cos, sin,
self.is_neox_style)
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
def extra_repr(self) -> str:
s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}"
s += f", max_position_embeddings={self.max_position_embeddings}"
s += f", base={self.base}, is_neox_style={self.is_neox_style}"
return s