class BitsAndBytesModelLoader(BaseModelLoader):
"""Model loader to load model weights with BitAndBytes quantization."""
possible_config_file_names = ["adapter_config.json"]
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
# Save the module names without sharding.
self.unsharded_weights_modules: list[str] = []
# Save the module names that are sharded by column.
self.column_sharded_weights_modules: list[str] = []
# Modules whose weights might have fused on disk
# we need their output_sizes to make shard in flight correctly with TP
self.maybe_fused_weights_modules: dict[str, list[int]] = {}
# Store all module names (from transformers) that support
# BNB quantization.
self.target_modules: list[str] = []
# Store the mapping of expert parameters for MoE models.
self.expert_params_mapping: list[tuple[str, str, int, str]] = []
# mapping weight names from transformers to vllm.
self.weight_mapper: Callable = lambda name: name
self.pre_quant: bool = False
self.load_8bit: bool = False
self.is_pool_model: bool = False
def _get_weight_files(
self,
model_name_or_path: str,
allowed_patterns: list[str],
revision: Optional[str] = None,
) -> tuple[str, list[str], str]:
"""Retrieve weight files. Download the files if necessary.
Return the weight files and the file pattern."""
is_local = os.path.isdir(model_name_or_path)
if is_local:
for pattern in allowed_patterns:
weight_files = glob.glob(
os.path.join(model_name_or_path, pattern))
if weight_files:
return model_name_or_path, weight_files, pattern
else:
hf_api = HfApi()
repo_files = hf_api.list_repo_files(repo_id=model_name_or_path)
for pattern in allowed_patterns:
matching_files = fnmatch.filter(repo_files, pattern)
if matching_files:
hf_folder = download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
[pattern],
revision,
ignore_patterns=self.load_config.ignore_patterns,
)
return hf_folder, glob.glob(
os.path.join(hf_folder, pattern)), pattern
raise RuntimeError(
f"No model weights found in: `{model_name_or_path}`")
def _prepare_weights(self, model_name_or_path: str,
revision: Optional[str]) -> tuple[list[str], bool]:
"""Prepare weight files for the model."""
allowed_patterns = ["*.safetensors", "*.bin", "*.pt"]
hf_folder, hf_weights_files, matched_pattern = self._get_weight_files(
model_name_or_path, allowed_patterns, revision)
use_safetensors = matched_pattern == "*.safetensors"
is_local = os.path.isdir(model_name_or_path)
index_file = SAFE_WEIGHTS_INDEX_NAME
if use_safetensors:
# For models like Mistral-7B-Instruct-v0.3
# there are both sharded safetensors files and a consolidated
# safetensors file. Using both breaks.
# Here, we download the `model.safetensors.index.json` and filter
# any files not found in the index.
if not is_local:
download_safetensors_index_file_from_hf(
model_name_or_path,
index_file,
self.load_config.download_dir,
revision,
)
hf_weights_files = filter_duplicate_safetensors_files(
hf_weights_files, hf_folder, index_file)
else:
hf_weights_files = filter_files_not_needed_for_inference(
hf_weights_files)
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{model_name_or_path}`")
return hf_weights_files, use_safetensors
def _hf_weight_iter(self, hf_weights_files, use_safetensors: bool):
def _maybe_pool_model(module_name: str):
# For pool model, we need to add the prefix `model.`
# for the weight name if possible.
if self.is_pool_model and self.target_modules[0]. \
startswith("model.") and not module_name.startswith(
"model."):
return "model." + module_name
return module_name
if use_safetensors:
iterator = safetensors_weights_iterator(
hf_weights_files,
self.load_config.use_tqdm_on_load,
)
else:
iterator = pt_weights_iterator(
hf_weights_files,
self.load_config.use_tqdm_on_load,
self.load_config.pt_load_map_location,
)
for org_name, param in iterator:
# mapping weight names from transformers to vllm while preserving
# original names.
mapped_name = self.weight_mapper(org_name)
mapped_name = _maybe_pool_model(mapped_name)
yield org_name, mapped_name, param
def _get_quantized_weights_iterator(
self,
model_name_or_path: str,
revision: Optional[str],
) -> tuple[Generator[tuple[str, torch.Tensor], None, None], dict[str,
Any]]:
"""Get an iterator to the model weights with bitsandbytes quantization,
as well as the quantization state dictionary."""
# only load the bitsandbytes module when needed
try:
import bitsandbytes
if version.parse(
bitsandbytes.__version__) < version.parse("0.46.1"):
raise ImportError("bitsandbytes version is wrong. Please "
"install bitsandbytes>=0.46.1.")
except ImportError as err:
raise ImportError("Please install bitsandbytes>=0.46.1 via "
"`pip install bitsandbytes>=0.46.1` to use "
"bitsandbytes quantizer.") from err
hf_weights_files, use_safetensors = self._prepare_weights(
model_name_or_path, revision)
quant_state_dict: dict[str, Any] = {}
if self.pre_quant:
if self.load_8bit:
return self._quantized_8bit_generator(
hf_weights_files, use_safetensors,
quant_state_dict), quant_state_dict
else:
return self._quantized_4bit_generator(
hf_weights_files, use_safetensors,
quant_state_dict), quant_state_dict
return self._unquantized_generator(hf_weights_files, use_safetensors,
quant_state_dict), quant_state_dict
def _is_8bit_weight_name(self, weight_name: str):
quantized_suffix = {".scb", ".weight_format"}
return any(weight_name.lower().endswith(suffix)
for suffix in quantized_suffix)
def _is_4bit_weight_name(self, weight_name: str):
quantized_suffix = {
"absmax",
"quant_map",
"nested_absmax",
"nested_quant_map",
"bitsandbytes",
}
suffix = weight_name.split(".")[-1]
return any(q_suffix in suffix for q_suffix in quantized_suffix)
def _quantized_8bit_generator(self, hf_weights_files, use_safetensors,
quant_state_dict) -> Generator:
for (
org_weight_name,
mapped_weight_name,
weight_tensor,
) in self._hf_weight_iter(hf_weights_files, use_safetensors):
if not mapped_weight_name.lower().endswith(".scb"):
continue
weight_key = mapped_weight_name.lower().replace(".scb", ".weight")
quant_state_dict[weight_key] = weight_tensor
for (
org_weight_name,
mapped_weight_name,
weight_tensor,
) in self._hf_weight_iter(hf_weights_files, use_safetensors):
if self._is_8bit_weight_name(mapped_weight_name):
continue
if mapped_weight_name in quant_state_dict:
set_weight_attrs(weight_tensor, {"load_in_8bit": True})
yield org_weight_name, weight_tensor
else:
yield org_weight_name, weight_tensor
def _quantized_4bit_generator(self, hf_weights_files, use_safetensors,
quant_state_dict) -> Generator:
from bitsandbytes.functional import QuantState
# First iterate over all quant state weights
weight_iterator = self._hf_weight_iter(hf_weights_files,
use_safetensors)
temp_state_dict = {}
for (
org_weight_name,
mapped_weight_name,
weight_tensor,
) in weight_iterator:
if not self._is_4bit_weight_name(mapped_weight_name):
continue
# bitsandbytes library requires
# weight.quant_state.bitsandbytes__* in CPU
if "quant_state.bitsandbytes" in mapped_weight_name:
temp_state_dict[mapped_weight_name] = weight_tensor.cpu().data
else:
temp_state_dict[mapped_weight_name] = weight_tensor
# Closure to parse quant_state for each prequant weight
def _parse_quant_state(param_name: str,
temp_state_dict: dict) -> QuantState:
quant_state = {}
for k in temp_state_dict:
if param_name + "." in k:
quant_state[k] = temp_state_dict[k]
return QuantState.from_dict(quant_state,
device=current_platform.device_type)
# Second iterate over all prequant and normal weights
# pre quantized weights would have a quant_state
for (
org_weight_name,
mapped_weight_name,
weight_tensor,
) in self._hf_weight_iter(hf_weights_files, use_safetensors):
if self._is_4bit_weight_name(mapped_weight_name):
continue
if (f"{mapped_weight_name}.quant_state.bitsandbytes__nf4"
in temp_state_dict) or (
f"{mapped_weight_name}.quant_state.bitsandbytes__fp4"
in temp_state_dict):
quant_state = _parse_quant_state(mapped_weight_name,
temp_state_dict)
quant_state_dict[mapped_weight_name] = quant_state
yield org_weight_name, weight_tensor
else:
yield org_weight_name, weight_tensor
def _unquantized_generator(self, hf_weights_files, use_safetensors,
quant_state_dict) -> Generator:
from bitsandbytes.functional import quantize_4bit
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
for (
org_weight_name,
mapped_weight_name,
weight_tensor,
) in self._hf_weight_iter(hf_weights_files, use_safetensors):
if any(target_module in mapped_weight_name
for target_module in self.target_modules
) and mapped_weight_name.endswith(".weight"):
# Without sharding
if any(
mapped_weight_name.startswith(module)
for module in self.unsharded_weights_modules):
weight_sub_tensor = weight_tensor
# Shard by column
elif any(
mapped_weight_name.startswith(module)
for module in self.column_sharded_weights_modules):
total_size = weight_tensor.size(-1)
start_index = total_size // tp_size * tp_rank
end_index = total_size // tp_size * (tp_rank + 1)
weight_sub_tensor = weight_tensor[...,
start_index:end_index]
# Weights have fused on disk. In this case, we assume that the
# weight and module use same name.
elif any(
mapped_weight_name.startswith(module)
for module in self.maybe_fused_weights_modules):
# special case for fused weights
# get the size of each shard weight tensor
total_shard_sizes = next(
(sizes for module, sizes in
self.maybe_fused_weights_modules.items()
if mapped_weight_name.startswith(module)))
total_size = weight_tensor.size(0)
assert total_size == sum(total_shard_sizes)
# get the start/end index of each shard weight tensor
total_start_index = list(
itertools.accumulate([0] + total_shard_sizes))[:-1]
shard_weights_index = [(
idx + size // tp_size * tp_rank,
idx + size // tp_size * (tp_rank + 1),
) for idx, size in zip(total_start_index,
total_shard_sizes)]
# slice and reorder the weight tensor
weight_tensor = [
weight_tensor[start_index:end_index, ...]
for start_index, end_index in shard_weights_index
]
weight_sub_tensor = torch.cat(weight_tensor, dim=0)
# Shard by row
else:
total_size = weight_tensor.size(0)
start_index = total_size // tp_size * tp_rank
end_index = total_size // tp_size * (tp_rank + 1)
weight_sub_tensor = weight_tensor[start_index:end_index,
...]
# bitsandbytes requires data in GPU
if weight_sub_tensor.is_cuda:
loaded_weight = weight_sub_tensor
else:
loaded_weight = weight_sub_tensor.to(
device=current_platform.device_type)
# remove the following after the issue is fixed:
# https://github.com/bitsandbytes-foundation/bitsandbytes/issues/1342
if loaded_weight.is_contiguous() is False:
loaded_weight = loaded_weight.contiguous()
with set_default_torch_dtype(torch.float32):
processed_weight, quant_state = quantize_4bit(
loaded_weight,
compress_statistics=True,
quant_type="nf4",
)
quant_state_dict[mapped_weight_name] = quant_state
else:
processed_weight = weight_tensor
yield org_weight_name, processed_weight
def _get_bnb_target_modules(self, model: nn.Module) -> None:
"""
Identify and collect all modules that support BitsAndBytes
quantization.
"""
for name, module in model.named_modules():
if (isinstance(module, LinearBase)
and hasattr(module.quant_method, "quant_config")):
if modules_info := self.modules_mapping.get_sub_modules(name):
# Map vllm's names to transformers's names.
rep_name, sub_modules = modules_info
for sub_name in sub_modules:
self.target_modules.append(
name.replace(rep_name, sub_name))
# Add original module name even if the module has stacked map,
# in case model has a mixture of disk-merged and disk-split
# weights with same last name.
self.target_modules.append(name)
elif isinstance(module, FusedMoE) and hasattr(
module.quant_method, "quant_config"):
# TODO: support FusedMoE with prequant and 8bit.
if self.pre_quant and self.load_8bit:
raise ValueError(
"Prequant BitsAndBytes 8bit models with FusedMoE "
"is not supported yet.")
# Get the corresponding weight name using module name and
# expert_params_mapping.
for exp in self.expert_params_mapping:
weight_name = exp[1]
rep_name = name.replace("experts",
"") + weight_name.removesuffix(".")
self.target_modules.append(rep_name)
assert (self.target_modules
), "vLLM currently does not support BNB quantization for"
f" {type(model).__name__}"
def _classify_module_sharding(self, model: nn.Module):
"""
Categorize modules based on their weight sharding requirements
for tensor parallelism.
"""
for name, module in model.named_modules():
# Some modules like `ReplicatedLinear` should not have their weights
# sharded. The reason for implementing it this way is to avoid new
# static variable in the model implementation.
if isinstance(module, (ReplicatedLinear, )):
self.unsharded_weights_modules.append(name)
# `QKVParallelLinear` and `MergedColumnParallelLinear` might have
# fused weights on disk. We need to use the output sizes of these
# modules to shard the weights correctly.
elif isinstance(module,
(QKVParallelLinear, MergedColumnParallelLinear)):
self.maybe_fused_weights_modules[name] = module.output_sizes
# In TP, these weights are partitioned along the column
# dimension (dim=-1)
elif isinstance(module, (RowParallelLinear, )):
self.column_sharded_weights_modules.append(name)
elif isinstance(module, FusedMoE):
expert_mapping = self.expert_params_mapping
for exp in expert_mapping:
if exp[-1] == "w2":
weight_name = exp[1]
rep_name = name.replace(
"experts", "") + weight_name.removesuffix(".")
self.column_sharded_weights_modules.append(rep_name)
def _verify_model_compatibility(self, model: nn.Module,
model_config: ModelConfig) -> None:
"""
Verify that the model is compatible with BitsAndBytes quantization.
"""
if not hasattr(model, "load_weights"):
raise AttributeError(
"The required method 'load_weights' is not defined in class"
f" {type(model).__name__}.")
if not hasattr(model, "packed_modules_mapping"):
raise AttributeError(
f"Model {type(model).__name__} does not support BitsAndBytes "
"quantization yet. No 'packed_modules_mapping' found.")
quant_config = getattr(model_config.hf_config, "quantization_config",
None)
if quant_config is not None:
quant_method = quant_config.get("quant_method")
if quant_method == "bitsandbytes":
self.pre_quant = True
else:
raise ValueError(
f"BitsAndBytes loader does not support {quant_method} "
"quantization")
# The quant_states in pre_quantized models cannot work with a split
# weight tensor. So TP does not work with pre_quantized bnb models.
if self.pre_quant and get_tensor_model_parallel_world_size() > 1:
raise ValueError(
"Prequant BitsAndBytes models with tensor parallelism is not "
"supported. Please try with pipeline parallelism.")
if self.pre_quant:
self.load_8bit = quant_config.get("load_in_8bit", False)
def _initialize_loader_state(self, model: nn.Module,
model_config: ModelConfig) -> None:
"""
Initialize the loader's internal state based on the model and
configuration.
"""
self.is_pool_model = is_pooling_model(model)
self.modules_mapping = ParamMapping(get_packed_modules_mapping(model))
if is_moe_model(model):
self.expert_params_mapping = get_moe_expert_mapping(model)
if not self.expert_params_mapping:
raise AttributeError(
f"MoE Model {type(model).__name__} does not support "
"BitsAndBytes quantization yet. Ensure this model has "
"'get_expert_mapping' method.")
# For some models like Molmo, we need to use hf_to_vllm_mapper
# to ensure correct loading of weights.
if hf_to_vllm_mapper := getattr(model, "hf_to_vllm_mapper", None):
self.weight_mapper = lambda name: hf_to_vllm_mapper._map_name(name)
self._get_bnb_target_modules(model)
self._classify_module_sharding(model)
def _dequantize_dq(self, quant_states: Any):
"""
When BNB employs Double Quantization, we perform the dequantization of
these constants during weight loading rather than at inference time,
thereby avoiding this computational overhead during inference. This
comes at the cost of increased memory usage.
"""
from bitsandbytes.functional import QuantState, dequantize_blockwise
def _dequantize_single_state(quant_state):
"""Helper function to dequantize a single QuantState object."""
if not (isinstance(quant_state, QuantState)
and quant_state.nested):
return
# Copied from: https://github.com/bitsandbytes-foundation/bitsandbytes/blob/0.45.3/bitsandbytes/functional.py#L1352-#L1356
absmax = dequantize_blockwise(quant_state.absmax,
quant_state.state2)
absmax += quant_state.offset
# Ensure float32 dtype
if absmax.dtype != torch.float32:
absmax = absmax.float()
quant_state.absmax = absmax
quant_state.nested = False
quant_state.offset = None
quant_state.state2 = None
if isinstance(quant_states, dict):
for quant_state in quant_states.values():
_dequantize_single_state(quant_state)
else:
_dequantize_single_state(quant_states)
return quant_states
def _fuse_moe_quant_states(self, model: nn.Module,
quant_states_dict: dict) -> dict:
"""
This function consolidates individual expert quantization states into
fused representations for w13 and w2.
"""
from bitsandbytes.functional import QuantState
if not self.expert_params_mapping:
return dict()
expert_mapping = self.expert_params_mapping
expert_qs_dict = {}
for name, module in model.named_modules():
if not isinstance(module, FusedMoE):
continue
w1_states_lst = []
w2_states_lst = []
w3_states_lst = []
for exp in expert_mapping:
shard_id = exp[-1]
if shard_id not in ("w1", "w2", "w3"):
raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
f"got {shard_id}.")
layer_prefix = name.split("experts")[0]
weight_qual_name = layer_prefix + exp[1] + "weight"
quant_state = self._dequantize_dq(
quant_states_dict[weight_qual_name])
if shard_id == "w1":
w1_states_lst.append(quant_state)
elif shard_id == "w2":
w2_states_lst.append(quant_state)
else:
w3_states_lst.append(quant_state)
del quant_states_dict[weight_qual_name]
assert (len(w1_states_lst) == len(w2_states_lst) ==
len(w3_states_lst))
w13_absmax_lst = []
w2_absmax_lst = []
w13_total_dim0 = 0
w2_total_dim0 = 0
for w1_qs, w2_qs, w3_qs in zip(w1_states_lst, w2_states_lst,
w3_states_lst):
assert w1_qs.shape == w3_qs.shape
assert w1_qs.blocksize == w2_qs.blocksize == w3_qs.blocksize
assert w1_qs.dtype == w2_qs.dtype == w3_qs.dtype
# w1 and w3 are interleaved in storage
w13_absmax_lst.append(w1_qs.absmax)
w13_absmax_lst.append(w3_qs.absmax)
w2_absmax_lst.append(w2_qs.absmax)
w13_total_dim0 += w1_qs.shape[0] + w3_qs.shape[0]
w2_total_dim0 += w2_qs.shape[0]
w13_absmax = torch.cat(w13_absmax_lst)
w2_absmax = torch.cat(w2_absmax_lst)
# Create fused quantization state for w13.
w13_qs = QuantState(
absmax=w13_absmax,
shape=(w13_total_dim0, w1_states_lst[0].shape[1]),
code=w1_states_lst[0].code,
blocksize=w1_states_lst[0].blocksize,
quant_type="nf4",
dtype=w1_states_lst[0].dtype,
)
# Create fused quantization state for w2.
w2_qs = QuantState(
absmax=w2_absmax,
shape=(w2_total_dim0, w2_states_lst[0].shape[1]),
code=w2_states_lst[0].code,
blocksize=w2_states_lst[0].blocksize,
quant_type="nf4",
dtype=w2_states_lst[0].dtype,
)
# The weight suffixes .w13_weight and .w2_weight are consistent
# with the param in BitsAndBytesMoEMethod.
w13_weight_name = name + ".w13_weight"
w2_weight_name = name + ".w2_weight"
expert_qs_dict[w13_weight_name] = w13_qs
expert_qs_dict[w2_weight_name] = w2_qs
return expert_qs_dict
def _stack_quantization_states(
self, model: nn.Module,
quant_state_dict: dict) -> dict[str, dict[int, Any]]:
stacked_quant_state_dict: dict[str, dict[int, Any]] = {}
# TODO: Change this lazy import to normal import
# after the checks are updated to run on a new version
from vllm.model_executor.models.utils import is_pp_missing_parameter
param_dict = dict(model.named_parameters())
for quant_param_name in quant_state_dict:
if is_pp_missing_parameter(quant_param_name, model):
continue
non_stacked_param_name = quant_param_name
shard_index = 0
for shard_name, (
weight_name,
index,
) in self.modules_mapping.inverse_packed_mapping.items():
# Some models, such as MiniCPM V2.5/2.6, contain both
# module names 'kv_proj' and 'qkv_proj'. To prevent 'kv_proj'
# from being incorrectly identified as being present in
# 'vpm.encoder.layers.0.self_attn.qkv_proj.weight
shard_pos = quant_param_name.find(shard_name)
can_correct_rename = (shard_pos
> 0) and (quant_param_name[shard_pos - 1]
== ".")
# If the quant_param_name is packed, it won't occur in the
# param_dict before renaming.
new_quant_param_name = quant_param_name.replace(
shard_name, weight_name)
need_rename = (quant_param_name not in param_dict) \
and (new_quant_param_name in param_dict)
if can_correct_rename and need_rename:
shard_index = index
quant_param_name = new_quant_param_name
break
# Models like Clip/Siglip may skip some layers in initialization,
# causing unused quant_param_name in state_dict.
if quant_param_name not in param_dict:
continue
if quant_param_name not in stacked_quant_state_dict:
stacked_quant_state_dict[quant_param_name] = {}
stacked_quant_state_dict[quant_param_name][shard_index] = (
quant_state_dict[non_stacked_param_name])
return stacked_quant_state_dict
def _bind_quant_states_to_params(self, model: nn.Module,
stacked_quant_state_dict: dict) -> None:
# save quant_states and offsets as the attributes of the parameters
param_dict = dict(model.named_parameters())
for param_name, param in param_dict.items():
if param_name in stacked_quant_state_dict:
quant_states = stacked_quant_state_dict[param_name]
# Dequantize double quantized values during weight loading.
self._dequantize_dq(quant_states)
set_weight_attrs(param, {"bnb_quant_state": quant_states})
if not isinstance(quant_states, dict):
continue
pack_ratio = getattr(param, "pack_factor", -1)
if pack_ratio == -1:
raise ValueError(
f"pack_factor not set for parameter {param_name}.")
num_elements = [0] * len(quant_states)
for seq, quant_state in quant_states.items():
num_elements[seq] = (math.prod(quant_state.shape) //
pack_ratio)
offsets = np.concatenate(([0], np.cumsum(num_elements)))
# Make torch infer_schema happy
offsets = torch.tensor(offsets).cpu()
set_weight_attrs(param, {"bnb_shard_offsets": offsets})
if self.load_8bit:
set_weight_attrs(
param, {"matmul_state": [None] * len(quant_states)})
def load_weights(self, model: nn.Module,
model_config: ModelConfig) -> None:
self._verify_model_compatibility(model, model_config)
self._initialize_loader_state(model, model_config)
logger.info("Loading weights with BitsAndBytes quantization. "
"May take a while ...")
qweight_iterator, quant_state_dict = (
self._get_quantized_weights_iterator(
model_config.model,
model_config.revision,
))
weights_to_load = {name for name, _ in model.named_parameters()}
loaded_weights = model.load_weights(qweight_iterator)
# Some models may have weights loading tracker unimplemented.
if loaded_weights is not None:
weights_not_loaded = weights_to_load - loaded_weights
if weights_not_loaded:
raise ValueError("Following weights were not initialized from "
f"checkpoint: {weights_not_loaded}")
expert_quant_state_dict = self._fuse_moe_quant_states(
model, quant_state_dict)
stacked_quant_state_dict = self._stack_quantization_states(
model, quant_state_dict)
stacked_quant_state_dict = {
**expert_quant_state_dict,
**stacked_quant_state_dict
}
self._bind_quant_states_to_params(model, stacked_quant_state_dict)
torch.cuda.empty_cache()
def download_model(self, model_config: ModelConfig) -> None:
self._prepare_weights(model_config.model, model_config.revision)