Skip to content

vllm.model_executor.models.adapters

SEQ_CLS_LOAD_METHODS module-attribute

SEQ_CLS_LOAD_METHODS = {
    "from_2_way_softmax": load_weights_using_from_2_way_softmax,
    "no_post_processing": load_weights_no_post_processing,
}

_GENERATE_SUFFIXES module-attribute

_GENERATE_SUFFIXES = [
    "ForCausalLM",
    "ForConditionalGeneration",
    "ChatModel",
    "LMHeadModel",
]

_T module-attribute

_T = TypeVar('_T', bound=type[Module])

logger module-attribute

logger = init_logger(__name__)

SequenceClassificationConfig

Bases: VerifyAndUpdateConfig

Source code in vllm/model_executor/models/adapters.py
class SequenceClassificationConfig(VerifyAndUpdateConfig):

    @staticmethod
    def verify_and_update_config(vllm_config: "VllmConfig") -> None:
        config = vllm_config.model_config.hf_config
        method = getattr(config, "method", None)
        tokens = getattr(config, "classifier_from_token", None)

        if method is None:
            return

        assert tokens is not None
        assert method in SEQ_CLS_LOAD_METHODS, f"method {method} not supported"

        if method == "from_2_way_softmax":
            assert len(tokens) == 2
            config.num_labels = 1
        else:
            config.num_labels = len(tokens)

        # `llm as reranker` defaults to not using pad_token
        use_pad_token = getattr(config, "use_pad_token", False)
        config.use_pad_token = use_pad_token

verify_and_update_config staticmethod

verify_and_update_config(vllm_config: VllmConfig) -> None
Source code in vllm/model_executor/models/adapters.py
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
    config = vllm_config.model_config.hf_config
    method = getattr(config, "method", None)
    tokens = getattr(config, "classifier_from_token", None)

    if method is None:
        return

    assert tokens is not None
    assert method in SEQ_CLS_LOAD_METHODS, f"method {method} not supported"

    if method == "from_2_way_softmax":
        assert len(tokens) == 2
        config.num_labels = 1
    else:
        config.num_labels = len(tokens)

    # `llm as reranker` defaults to not using pad_token
    use_pad_token = getattr(config, "use_pad_token", False)
    config.use_pad_token = use_pad_token

_create_pooling_model_cls

_create_pooling_model_cls(orig_cls: _T) -> _T
Source code in vllm/model_executor/models/adapters.py
def _create_pooling_model_cls(orig_cls: _T) -> _T:
    # Lazy import
    from .utils import AutoWeightsLoader, WeightsMapper

    class ModelForPooling(orig_cls, VllmModelForPooling):

        is_pooling_model = True

        def __init__(
            self,
            *,
            vllm_config: "VllmConfig",
            prefix: str = "",
            **kwargs: Any,
        ) -> None:
            super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)

            self.vllm_config = vllm_config

            # These are not used in pooling models
            for attr in ("lm_head", "logits_processor"):
                if hasattr(self, attr):
                    delattr(self, attr)

            # If the model already defines a pooler instance, don't overwrite it
            if not getattr(self, "pooler", None):
                self._init_pooler(vllm_config, prefix=prefix)

        def _init_pooler(self, vllm_config: "VllmConfig", prefix: str = ""):
            raise NotImplementedError

        def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
            # TODO: Support uninitialized params tracking

            # We have deleted this attribute, so don't load it
            weights = ((name, data) for name, data in weights
                       if not name.startswith("lm_head."))

            # If `*ForCausalLM` defines `load_weights` on the inner model
            # and there are no other inner modules with parameters,
            # we support loading from both `*Model` and `*ForCausalLM`
            if hasattr(self, "model") and hasattr(self.model, "load_weights"):
                # Whether only `self.model` contains parameters
                model_is_only_param = all(
                    name == "model" or next(child.parameters(), None) is None
                    for name, child in self.named_children())

                if model_is_only_param:
                    mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
                    weights = mapper.apply(weights)

                    loaded_params = self.model.load_weights(weights)
                    loaded_params = {f"model.{name}" for name in loaded_params}
                    return loaded_params

            # For most other models
            if hasattr(orig_cls, "load_weights"):
                return orig_cls.load_weights(self, weights)  # type: ignore
            # Fallback
            else:
                loader = AutoWeightsLoader(self)
                return loader.load_weights(weights)

    return ModelForPooling  # type: ignore

_get_pooling_model_name

_get_pooling_model_name(
    orig_model_name: str, pooling_suffix: str
) -> str
Source code in vllm/model_executor/models/adapters.py
def _get_pooling_model_name(orig_model_name: str, pooling_suffix: str) -> str:
    model_name = orig_model_name

    for generate_suffix in _GENERATE_SUFFIXES:
        model_name = model_name.removesuffix(generate_suffix)

    return model_name + pooling_suffix

_load_dense_weights

_load_dense_weights(
    linear: Linear, folder: str, model_config: ModelConfig
) -> bool

Load weights using vLLM's weight_loader pattern.

Source code in vllm/model_executor/models/adapters.py
def _load_dense_weights(linear: nn.Linear, folder: str,
                        model_config: "ModelConfig") -> bool:
    """Load weights using vLLM's weight_loader pattern."""
    from vllm.model_executor.model_loader.weight_utils import (
        default_weight_loader)

    for filename in ["model.safetensors", "pytorch_model.bin"]:
        file_path = f"{folder}/{filename}" if folder else filename

        try:
            file_bytes = get_hf_file_bytes(file_path, model_config.model,
                                           model_config.revision)
            if not file_bytes:
                continue

            if filename.endswith(".safetensors"):
                from safetensors.torch import load as load_safetensors
                state_dict = load_safetensors(file_bytes)
            else:
                import io
                state_dict = torch.load(io.BytesIO(file_bytes),
                                        map_location="cpu",
                                        weights_only=True)

            for weight_key in ["weight", "linear.weight", "dense.weight"]:
                if weight_key in state_dict:
                    weight_loader = getattr(linear.weight, "weight_loader",
                                            default_weight_loader)
                    weight_loader(linear.weight,
                                  state_dict[weight_key].to(torch.float32))

                    bias_key = weight_key.replace("weight", "bias")
                    if linear.bias is not None and bias_key in state_dict:
                        bias_loader = getattr(linear.bias, "weight_loader",
                                              default_weight_loader)
                        bias_loader(linear.bias,
                                    state_dict[bias_key].to(torch.float32))
                    return True
        except Exception:
            logger.exception("Failed to load %s", filename)
            continue

    return False

_load_st_projector

_load_st_projector(
    model_config: ModelConfig,
) -> Optional[Module]

Load Sentence-Transformers Dense projection layers.

Source code in vllm/model_executor/models/adapters.py
def _load_st_projector(model_config: "ModelConfig") -> Optional[nn.Module]:
    """Load Sentence-Transformers Dense projection layers."""

    try:
        modules = get_hf_file_to_dict("modules.json", model_config.model,
                                      model_config.revision)
        if not modules:
            return None

        if isinstance(modules, dict):
            modules = modules.get("modules", [])

        dense_modules = [
            m for m in modules
            if m.get("type") == "sentence_transformers.models.Dense"
        ]
        if not dense_modules:
            return None

        module = dense_modules[0]
        folder = module.get("path", "")

        config_path = f"{folder}/config.json" if folder else "config.json"
        layer_config = get_hf_file_to_dict(config_path, model_config.model,
                                           model_config.revision)
        if not layer_config:
            return None

        linear = nn.Linear(layer_config.get("in_features", 768),
                           layer_config.get("out_features", 768),
                           bias=layer_config.get("bias", True),
                           dtype=torch.float32)

        if _load_dense_weights(linear, folder, model_config):
            layers = [linear]
            if act_name := layer_config.get("activation_function"):
                layers.append(get_act_fn(act_name))
            return nn.Sequential(*layers).to(dtype=torch.float32)

    except Exception:
        logger.exception("ST projector loading failed")

    return None

as_embedding_model

as_embedding_model(cls: _T) -> _T

Subclass an existing vLLM model to support embeddings.

By default, the embeddings of the whole prompt are extracted from the normalized hidden state corresponding to the last token.

Note

We assume that no extra layers are added to the original model; please implement your own model if this is not the case.

Source code in vllm/model_executor/models/adapters.py
def as_embedding_model(cls: _T) -> _T:
    """
    Subclass an existing vLLM model to support embeddings.

    By default, the embeddings of the whole prompt are extracted from the
    normalized hidden state corresponding to the last token.

    Note:
        We assume that no extra layers are added to the original model;
        please implement your own model if this is not the case.
    """
    # Avoid modifying existing embedding models
    if is_pooling_model(cls):
        return cls

    # Lazy import
    from vllm.model_executor.layers.pooler import DispatchPooler, Pooler

    class ModelForEmbedding(_create_pooling_model_cls(cls)):

        def _init_pooler(self, vllm_config: "VllmConfig", prefix: str = ""):
            pooler_config = vllm_config.model_config.pooler_config
            assert pooler_config is not None

            self.pooler = DispatchPooler(
                {
                    "encode": Pooler.for_encode(pooler_config),
                    "embed": Pooler.for_embed(pooler_config),
                }, )

    ModelForEmbedding.__name__ = \
        _get_pooling_model_name(cls.__name__, "ForEmbedding")

    return ModelForEmbedding  # type: ignore

as_reward_model

as_reward_model(cls: _T) -> _T

Subclass an existing vLLM model to support reward modeling.

By default, we return the hidden states of each token directly.

Note

We assume that no extra layers are added to the original model; please implement your own model if this is not the case.

Source code in vllm/model_executor/models/adapters.py
def as_reward_model(cls: _T) -> _T:
    """
    Subclass an existing vLLM model to support reward modeling.

    By default, we return the hidden states of each token directly.

    Note:
        We assume that no extra layers are added to the original model;
        please implement your own model if this is not the case.
    """
    # Avoid modifying existing reward models
    if is_pooling_model(cls):
        return cls

    # Lazy import
    from vllm.model_executor.layers.pooler import DispatchPooler, Pooler

    class ModelForReward(_create_pooling_model_cls(cls)):

        def _init_pooler(self, vllm_config: "VllmConfig", prefix: str = ""):
            pooler_config = vllm_config.model_config.pooler_config
            assert pooler_config is not None

            self.pooler = DispatchPooler(
                {"encode": Pooler.for_encode(pooler_config)}, )

    ModelForReward.__name__ = \
        _get_pooling_model_name(cls.__name__, "ForReward")

    return ModelForReward  # type: ignore

as_seq_cls_model

as_seq_cls_model(cls: _T) -> _T

Subclass an existing vLLM model to support classify and score tasks.

By default, the class probabilities are extracted from the softmaxed hidden state corresponding to the last token.

Note

We assume that the classification head is a single linear layer stored as the attribute score of the top-level model; please implement your own model if this is not the case.

Source code in vllm/model_executor/models/adapters.py
def as_seq_cls_model(cls: _T) -> _T:
    """
    Subclass an existing vLLM model to support classify and score tasks.

    By default, the class probabilities are extracted from the softmaxed
    hidden state corresponding to the last token.

    Note:
        We assume that the classification head is a single linear layer
        stored as the attribute `score` of the top-level model;
        please implement your own model if this is not the case.
    """
    # Avoid modifying existing classification models
    if is_pooling_model(cls):
        return cls

    # Lazy import
    from vllm.model_executor.layers.linear import RowParallelLinear
    from vllm.model_executor.layers.pooler import (ClassifierPooler,
                                                   DispatchPooler, Pooler,
                                                   PoolingMethod, PoolingType)
    from vllm.model_executor.models.interfaces import SupportsCrossEncoding
    from vllm.sequence import IntermediateTensors

    from .utils import maybe_prefix

    class ModelForSequenceClassification(_create_pooling_model_cls(cls),
                                         SupportsCrossEncoding):

        def _init_pooler(self, vllm_config: "VllmConfig", prefix: str = ""):
            config = vllm_config.model_config.hf_config
            quant_config = vllm_config.quant_config

            self.score = RowParallelLinear(
                config.hidden_size,
                config.num_labels,
                input_is_parallel=False,
                bias=False,
                params_dtype=torch.float32,
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "score"),
            )

            pooler_config = vllm_config.model_config.pooler_config
            assert pooler_config is not None

            pooling_type_str = pooler_config.pooling_type
            assert pooling_type_str is not None
            pooling_type = PoolingType[pooling_type_str]

            self.pooler = DispatchPooler({
                "encode":
                Pooler.for_encode(pooler_config),
                "classify":
                ClassifierPooler(
                    pooling=PoolingMethod.from_pooling_type(pooling_type),
                    classifier=self._classifier,
                    act_fn=ClassifierPooler.act_fn_for_seq_cls(
                        vllm_config.model_config),
                ),
                "score":
                ClassifierPooler(
                    pooling=PoolingMethod.from_pooling_type(pooling_type),
                    classifier=self._classifier,
                    act_fn=ClassifierPooler.act_fn_for_cross_encoder(
                        vllm_config.model_config),
                ),
            })

        def _classifier(self, x: torch.Tensor):
            x, _ = self.score(x.float())
            return x

        def forward(
            self,
            input_ids: torch.Tensor,
            positions: torch.Tensor,
            intermediate_tensors: Optional[IntermediateTensors] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
        ) -> torch.Tensor:
            return super().forward(input_ids, positions, intermediate_tensors,
                                   inputs_embeds)

        def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
            tokens = getattr(self.config, "classifier_from_token", None)
            method = getattr(self.config, "method", None)

            if tokens is None and method is None:
                return super().load_weights(weights)
            else:
                # Online convert ForCausalLM into
                # ForSequenceClassification model.
                return seq_cls_model_loader(self, weights)


    ModelForSequenceClassification.__name__ = \
        _get_pooling_model_name(cls.__name__, "ForSequenceClassification")

    return ModelForSequenceClassification  # type: ignore

load_weights_no_post_processing

load_weights_no_post_processing(
    model, weights: Iterable[tuple[str, Tensor]]
)
Source code in vllm/model_executor/models/adapters.py
def load_weights_no_post_processing(model,
                                    weights: Iterable[tuple[str,
                                                            torch.Tensor]]):
    from vllm.model_executor.layers.vocab_parallel_embedding import (
        ParallelLMHead)
    from vllm.model_executor.model_loader.weight_utils import (
        default_weight_loader)
    from vllm.model_executor.models.utils import AutoWeightsLoader

    model_config = model.vllm_config.model_config
    tokens = getattr(model.config, "classifier_from_token", [])
    tokens = cast(list[int], tokens)
    assert len(tokens) > 0

    if model.config.tie_word_embeddings:
        model.lm_head = model.model.embed_tokens
    else:
        model.lm_head = ParallelLMHead(model.config.vocab_size,
                                       model.config.hidden_size,
                                       quant_config=model.quant_config)

    loader = AutoWeightsLoader(model)
    loaded_weights = loader.load_weights(weights)

    from vllm.transformers_utils.tokenizer import get_tokenizer
    tokenizer = get_tokenizer(model_config.tokenizer,
                              revision=model_config.tokenizer_revision,
                              tokenizer_mode=model_config.tokenizer_mode,
                              trust_remote_code=model_config.trust_remote_code)

    token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
    score_weight = model.lm_head.weight.data[token_ids]

    param = model.score.weight
    weight_loader = getattr(param, "weight_loader", default_weight_loader)
    weight_loader(param, score_weight)

    del model.lm_head
    loaded_weights.add("score.weight")
    loaded_weights.discard("lm_head.weight")
    return loaded_weights

load_weights_using_from_2_way_softmax

load_weights_using_from_2_way_softmax(
    model, weights: Iterable[tuple[str, Tensor]]
)
Source code in vllm/model_executor/models/adapters.py
def load_weights_using_from_2_way_softmax(
        model, weights: Iterable[tuple[str, torch.Tensor]]):
    # refer to https://huggingface.co/Qwen/Qwen3-Reranker-0.6B/discussions/3
    from vllm.model_executor.layers.vocab_parallel_embedding import (
        ParallelLMHead)
    from vllm.model_executor.model_loader.weight_utils import (
        default_weight_loader)
    from vllm.model_executor.models.utils import AutoWeightsLoader

    model_config = model.vllm_config.model_config
    tokens = getattr(model.config, "classifier_from_token", [])
    tokens = cast(list[int], tokens)
    assert len(tokens) == 2

    if model.config.tie_word_embeddings:
        model.lm_head = model.model.embed_tokens
    else:
        model.lm_head = ParallelLMHead(model.config.vocab_size,
                                       model.config.hidden_size,
                                       quant_config=model.quant_config)

    loader = AutoWeightsLoader(model)
    loaded_weights = loader.load_weights(weights)

    from vllm.transformers_utils.tokenizer import get_tokenizer
    tokenizer = get_tokenizer(model_config.tokenizer,
                              revision=model_config.tokenizer_revision,
                              tokenizer_mode=model_config.tokenizer_mode,
                              trust_remote_code=model_config.trust_remote_code)

    false_id = tokenizer.convert_tokens_to_ids(tokens[0])
    true_id = tokenizer.convert_tokens_to_ids(tokens[1])
    score_weight = model.lm_head.weight.data[[true_id]].to(
        torch.float32) - model.lm_head.weight.data[[false_id]].to(
            torch.float32)

    param = model.score.weight
    weight_loader = getattr(param, "weight_loader", default_weight_loader)
    weight_loader(param, score_weight)

    del model.lm_head
    loaded_weights.add("score.weight")
    loaded_weights.discard("lm_head.weight")
    return loaded_weights

seq_cls_model_loader

seq_cls_model_loader(
    model, weights: Iterable[tuple[str, Tensor]]
)
Source code in vllm/model_executor/models/adapters.py
def seq_cls_model_loader(model, weights: Iterable[tuple[str, torch.Tensor]]):
    # Online convert ForCausalLM into ForSequenceClassification model.
    # - from_2_way_softmax:
    #   - Qwen3ForCausalLM
    #     - Qwen3-Reranker
    #   - Qwen2ForCausalLM
    #     - mxbai-rerank-v2
    # - no_post_processing:
    #   - GemmaForCausalLM
    #     - bge-reranker-v2-gemma

    config = model.vllm_config.model_config.hf_config
    method = getattr(config, "method", None)
    assert method in SEQ_CLS_LOAD_METHODS, f"method {method} not supported"
    return SEQ_CLS_LOAD_METHODS[method](model, weights)