vllm.model_executor.models.blip2
Blip2ImageInputs module-attribute
¶
Blip2ImageInputs = Union[
Blip2ImagePixelInputs, Blip2ImageEmbeddingInputs
]
Blip2DummyInputsBuilder ¶
Bases: BaseDummyInputsBuilder[Blip2ProcessingInfo]
Source code in vllm/model_executor/models/blip2.py
get_dummy_mm_data ¶
get_dummy_mm_data(
seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/blip2.py
Blip2ForConditionalGeneration ¶
Bases: Module
, SupportsMultiModal
, SupportsPP
, SupportsQuant
Source code in vllm/model_executor/models/blip2.py
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
|
language_model instance-attribute
¶
language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
language_projection instance-attribute
¶
language_projection = Linear(
hidden_size, hidden_size, bias=True
)
make_empty_intermediate_tensors instance-attribute
¶
qformer instance-attribute
¶
qformer = Blip2QFormerModel(
qformer_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.qformer",
)
query_tokens instance-attribute
¶
query_tokens = Parameter(
zeros(1, num_query_tokens, hidden_size)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/blip2.py
_create_image_input ¶
_create_image_input(
**kwargs: object,
) -> Optional[Blip2ImageInputs]
Source code in vllm/model_executor/models/blip2.py
_image_pixels_to_features ¶
_image_pixels_to_features(
vision_model: BlipVisionModel, pixel_values: Tensor
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
_process_image_input ¶
_process_image_input(
image_input: Blip2ImageInputs,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
_process_image_pixels ¶
_process_image_pixels(
inputs: Blip2ImagePixelInputs,
) -> Tensor
compute_logits ¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
**kwargs: object,
) -> IntermediateTensors
Run forward pass for BLIP-2.
One key thing to understand is the input_ids
already accounts for the positions of the to-be-inserted image embeddings.
Concretely, consider a text prompt: "Question: What's the content of the image? Answer:"
.
Tokenizer outputs: [2, 45641, 35, 653, 18, 5, 1383, 9, 5, 2274, 116, 31652, 35]
.
To reserve space in KV cache, we have to insert placeholder tokens before they are inputted to the model, so the input processor prepends dummy tokens (denoted as 50265
), resulting in: [50265, ..., 50265, 2, 45641, 35, ..., 31652, 35]
.
We insert 32 tokens since it corresponds to the number of query embeddings outputted by the Q-Former and inputted to the language model.
This way, the positions
and attn_metadata
are consistent with the input_ids
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids | Tensor | Flattened (concatenated) input_ids corresponding to a batch. | required |
pixel_values | The pixels in each input image. | required |
Info
[Blip2ImageInputs][]
Source code in vllm/model_executor/models/blip2.py
get_input_embeddings ¶
get_input_embeddings(
input_ids: Tensor,
multimodal_embeddings: Optional[
MultiModalEmbeddings
] = None,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
get_multimodal_embeddings ¶
get_multimodal_embeddings(
**kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/blip2.py
get_placeholder_str classmethod
¶
Blip2ImageEmbeddingInputs ¶
Bases: TensorSchema
Dimensions
- bn: Batch size * number of images
- f: Image feature size
- h: Hidden size (must match the hidden size of language model backbone)
Source code in vllm/model_executor/models/blip2.py
Blip2ImagePixelInputs ¶
Bases: TensorSchema
Dimensions
- bn: Batch size * number of images
- c: Number of channels (3)
- h: Height of each image
- w: Width of each image
Source code in vllm/model_executor/models/blip2.py
Blip2MultiModalProcessor ¶
Bases: BaseMultiModalProcessor[Blip2ProcessingInfo]
Source code in vllm/model_executor/models/blip2.py
_call_hf_processor ¶
_call_hf_processor(
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/blip2.py
_get_mm_fields_config ¶
_get_mm_fields_config(
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/blip2.py
_get_prompt_updates ¶
_get_prompt_updates(
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/blip2.py
Blip2ProcessingInfo ¶
Bases: BaseProcessingInfo
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerAttention ¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
attention instance-attribute
¶
attention = Blip2QFormerMultiHeadAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=is_cross_attention,
prefix=f"{prefix}.attention",
)
__init__ ¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward ¶
forward(
hidden_states: Tensor,
encoder_hidden_states: Optional[FloatTensor] = None,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
layer instance-attribute
¶
layer = ModuleList(
[
(
Blip2QFormerLayer(
config,
quant_config=quant_config,
cache_config=cache_config,
layer_idx=layer_idx,
prefix=f"{prefix}.layer.{layer_idx}",
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward ¶
forward(
hidden_states: FloatTensor,
encoder_hidden_states: FloatTensor,
query_length: int,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerIntermediate ¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerLayer ¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
attention instance-attribute
¶
attention = Blip2QFormerAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.attention",
)
crossattention instance-attribute
¶
crossattention = Blip2QFormerAttention(
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=True,
prefix=f"{prefix}.crossattention",
)
intermediate_query instance-attribute
¶
intermediate_query = Blip2QFormerIntermediate(
config, prefix=f"{prefix}.intermediate_query"
)
output_query instance-attribute
¶
output_query = Blip2QFormerOutput(
config, prefix=f"{prefix}.output_query"
)
__init__ ¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
layer_idx: int,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
feed_forward_chunk ¶
feed_forward_chunk_query ¶
Source code in vllm/model_executor/models/blip2.py
forward ¶
forward(
hidden_states: FloatTensor,
encoder_hidden_states: FloatTensor,
query_length: int,
)
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerModel ¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
encoder instance-attribute
¶
encoder = Blip2QFormerEncoder(
config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.encoder",
)
__init__ ¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward ¶
forward(
query_embeds: FloatTensor,
encoder_hidden_states: FloatTensor,
) -> Tensor
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerMultiHeadAttention ¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
position_embedding_type instance-attribute
¶
position_embedding_type = getattr(
config, "position_embedding_type", "absolute"
)
__init__ ¶
__init__(
config: Blip2QFormerConfig,
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/blip2.py
forward ¶
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerOutput ¶
Bases: Module
Source code in vllm/model_executor/models/blip2.py
Blip2QFormerSelfOutput ¶
Bases: Module