Skip to content

vllm.model_executor.models.cohere2_vision

Command-A-Vision (Cohere2Vision) multimodal model implementation for vLLM.

Cohere2VisionDummyInputsBuilder

Bases: BaseDummyInputsBuilder[Cohere2VisionProcessingInfo]

Source code in vllm/model_executor/models/cohere2_vision.py
class Cohere2VisionDummyInputsBuilder(
        BaseDummyInputsBuilder[Cohere2VisionProcessingInfo]):

    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_images = mm_counts.get("image", 0)

        processor = self.info.get_hf_processor()
        image_token = processor.image_token

        return image_token * num_images

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)
        image_size = \
            self.info.get_image_size_with_most_features()

        return {
            "image":
            self._get_dummy_images(width=image_size.width,
                                   height=image_size.height,
                                   num_images=num_images)
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/cohere2_vision.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
    num_images = mm_counts.get("image", 0)
    image_size = \
        self.info.get_image_size_with_most_features()

    return {
        "image":
        self._get_dummy_images(width=image_size.width,
                               height=image_size.height,
                               num_images=num_images)
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/cohere2_vision.py
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
    num_images = mm_counts.get("image", 0)

    processor = self.info.get_hf_processor()
    image_token = processor.image_token

    return image_token * num_images

Cohere2VisionForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsPP

Source code in vllm/model_executor/models/cohere2_vision.py
@MULTIMODAL_REGISTRY.register_processor(
    Cohere2VisionMultiModalProcessor,
    info=Cohere2VisionProcessingInfo,
    dummy_inputs=Cohere2VisionDummyInputsBuilder)
class Cohere2VisionForConditionalGeneration(nn.Module, SupportsMultiModal,
                                            SupportsPP):

    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            "model.vision_tower.": "vision_tower.",
            "model.multi_modal_projector.": "multi_modal_projector.",
            "model.language_model.": "language_model.model.",
            "lm_head.": "language_model.lm_head.",
        })

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config: Cohere2VisionConfig = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config
        self.config = config
        self.quant_config = quant_config
        self.multimodal_config = multimodal_config
        self._patch_quant_config(config, quant_config)

        self.vision_tower = SiglipVisionModel(config.vision_config,
                                              quant_config,
                                              prefix=maybe_prefix(
                                                  prefix, "vision_tower"))
        self.vocab_size = config.text_config.vocab_size
        self.multi_modal_projector = \
            Cohere2VisionMultiModalProjector(
                config, prefix=maybe_prefix(prefix, "multi_modal_projector"))
        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=config.text_config,
            prefix=maybe_prefix(prefix, "language_model"),
            architectures=config.text_config.architectures)

    @property
    def dtype(self):
        return next(self.parameters()).dtype

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

    def _process_image_input(self, image_input: Cohere2VisionImagePixelInputs,
                             **kwargs) -> list[torch.Tensor]:
        """Process image pixels through vision tower and projector.

        Args:
            image_input: Validated image input containing pixel values and 
                         patch counts

        Returns:
            List of flattened image embeddings, one per image
        """
        assert self.vision_tower is not None, "Vision tower is required"

        pixel_values = image_input["pixel_values"]
        num_patches = image_input["num_patches"]

        # Extract visual features
        image_features = self.vision_tower(pixel_values)

        # Project to text embedding space
        image_embeds = self.multi_modal_projector(image_features)

        # Split and flatten embeddings per image
        return [
            e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())
        ]

    def _parse_and_validate_image_input(
            self, **kwargs: object) -> Optional[Cohere2VisionImagePixelInputs]:
        pixel_values = kwargs.pop("pixel_values", None)
        num_patches = kwargs.pop("num_patches", None)
        image_embeds = kwargs.pop("image_embeds", None)
        assert image_embeds is None, \
            "Cohere2Vision does not support image_embeds."

        if pixel_values is None:
            return None

        return Cohere2VisionImagePixelInputs(
            type="pixel_values",
            pixel_values=flatten_bn(pixel_values, concat=True),
            num_patches=flatten_bn(num_patches, concat=True),
            resolve_bindings={
                "h": self.config.vision_config.image_size,
                "w": self.config.vision_config.image_size,
            })

    def _patch_quant_config(self, config: PretrainedConfig,
                            quant_config: QuantizationConfig):
        # the awq models from OpenGVLab missing `modules_to_not_convert`
        # patch the quant_config to add `modules_to_not_convert` back
        if isinstance(quant_config, AWQConfig):
            text_config = config.text_config
            llm_quant_config = getattr(text_config, "quantization_config",
                                       None)
            if (not quant_config.modules_to_not_convert) and (llm_quant_config
                                                              is not None):
                quant_config.modules_to_not_convert.append("vision_tower")

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(self,
                                  **kwargs: object) -> MultiModalEmbeddings:
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return []

        return self._process_image_input(image_input, **kwargs)

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:
        inputs_embeds = self.language_model.get_input_embeddings(input_ids)
        if multimodal_embeddings is not None \
            and len(multimodal_embeddings) != 0:
            inputs_embeds = merge_multimodal_embeddings(
                input_ids=input_ids,
                inputs_embeds=inputs_embeds,
                multimodal_embeddings=multimodal_embeddings,
                placeholder_token_id=self.config.image_token_id,
            )

        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner, this
        # condition is for v0 compatibility.
        elif inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)
            inputs_embeds = self.get_input_embeddings(input_ids,
                                                      vision_embeddings)
            input_ids = None

        hidden_states = self.language_model.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)

config instance-attribute

config = config

dtype property

dtype

hf_to_vllm_mapper class-attribute instance-attribute

hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={
        "model.vision_tower.": "vision_tower.",
        "model.multi_modal_projector.": "multi_modal_projector.",
        "model.language_model.": "language_model.model.",
        "lm_head.": "language_model.lm_head.",
    }
)

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "language_model"),
    architectures=architectures,
)

multi_modal_projector instance-attribute

multi_modal_projector = Cohere2VisionMultiModalProjector(
    config,
    prefix=maybe_prefix(prefix, "multi_modal_projector"),
)

multimodal_config instance-attribute

multimodal_config = multimodal_config

quant_config instance-attribute

quant_config = quant_config

vision_tower instance-attribute

vision_tower = SiglipVisionModel(
    vision_config,
    quant_config,
    prefix=maybe_prefix(prefix, "vision_tower"),
)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/cohere2_vision.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config: Cohere2VisionConfig = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    multimodal_config = vllm_config.model_config.multimodal_config
    self.config = config
    self.quant_config = quant_config
    self.multimodal_config = multimodal_config
    self._patch_quant_config(config, quant_config)

    self.vision_tower = SiglipVisionModel(config.vision_config,
                                          quant_config,
                                          prefix=maybe_prefix(
                                              prefix, "vision_tower"))
    self.vocab_size = config.text_config.vocab_size
    self.multi_modal_projector = \
        Cohere2VisionMultiModalProjector(
            config, prefix=maybe_prefix(prefix, "multi_modal_projector"))
    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=config.text_config,
        prefix=maybe_prefix(prefix, "language_model"),
        architectures=config.text_config.architectures)

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> Optional[Cohere2VisionImagePixelInputs]
Source code in vllm/model_executor/models/cohere2_vision.py
def _parse_and_validate_image_input(
        self, **kwargs: object) -> Optional[Cohere2VisionImagePixelInputs]:
    pixel_values = kwargs.pop("pixel_values", None)
    num_patches = kwargs.pop("num_patches", None)
    image_embeds = kwargs.pop("image_embeds", None)
    assert image_embeds is None, \
        "Cohere2Vision does not support image_embeds."

    if pixel_values is None:
        return None

    return Cohere2VisionImagePixelInputs(
        type="pixel_values",
        pixel_values=flatten_bn(pixel_values, concat=True),
        num_patches=flatten_bn(num_patches, concat=True),
        resolve_bindings={
            "h": self.config.vision_config.image_size,
            "w": self.config.vision_config.image_size,
        })

_patch_quant_config

_patch_quant_config(
    config: PretrainedConfig,
    quant_config: QuantizationConfig,
)
Source code in vllm/model_executor/models/cohere2_vision.py
def _patch_quant_config(self, config: PretrainedConfig,
                        quant_config: QuantizationConfig):
    # the awq models from OpenGVLab missing `modules_to_not_convert`
    # patch the quant_config to add `modules_to_not_convert` back
    if isinstance(quant_config, AWQConfig):
        text_config = config.text_config
        llm_quant_config = getattr(text_config, "quantization_config",
                                   None)
        if (not quant_config.modules_to_not_convert) and (llm_quant_config
                                                          is not None):
            quant_config.modules_to_not_convert.append("vision_tower")

_process_image_input

_process_image_input(
    image_input: Cohere2VisionImagePixelInputs, **kwargs
) -> list[Tensor]

Process image pixels through vision tower and projector.

Parameters:

Name Type Description Default
image_input Cohere2VisionImagePixelInputs

Validated image input containing pixel values and patch counts

required

Returns:

Type Description
list[Tensor]

List of flattened image embeddings, one per image

Source code in vllm/model_executor/models/cohere2_vision.py
def _process_image_input(self, image_input: Cohere2VisionImagePixelInputs,
                         **kwargs) -> list[torch.Tensor]:
    """Process image pixels through vision tower and projector.

    Args:
        image_input: Validated image input containing pixel values and 
                     patch counts

    Returns:
        List of flattened image embeddings, one per image
    """
    assert self.vision_tower is not None, "Vision tower is required"

    pixel_values = image_input["pixel_values"]
    num_patches = image_input["num_patches"]

    # Extract visual features
    image_features = self.vision_tower(pixel_values)

    # Project to text embedding space
    image_embeds = self.multi_modal_projector(image_features)

    # Split and flatten embeddings per image
    return [
        e.flatten(0, 2) for e in image_embeds.split(num_patches.tolist())
    ]

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/cohere2_vision.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states,
                                              sampling_metadata)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/cohere2_vision.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
    if intermediate_tensors is not None:
        inputs_embeds = None

    # NOTE: In v1, inputs_embeds is always generated at model runner, this
    # condition is for v0 compatibility.
    elif inputs_embeds is None:
        vision_embeddings = self.get_multimodal_embeddings(**kwargs)
        inputs_embeds = self.get_input_embeddings(input_ids,
                                                  vision_embeddings)
        input_ids = None

    hidden_states = self.language_model.model(
        input_ids=input_ids,
        positions=positions,
        intermediate_tensors=intermediate_tensors,
        inputs_embeds=inputs_embeds,
    )
    return hidden_states

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: Optional[
        MultiModalEmbeddings
    ] = None,
) -> Tensor
Source code in vllm/model_executor/models/cohere2_vision.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
    inputs_embeds = self.language_model.get_input_embeddings(input_ids)
    if multimodal_embeddings is not None \
        and len(multimodal_embeddings) != 0:
        inputs_embeds = merge_multimodal_embeddings(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            multimodal_embeddings=multimodal_embeddings,
            placeholder_token_id=self.config.image_token_id,
        )

    return inputs_embeds

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/cohere2_vision.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/cohere2_vision.py
def get_multimodal_embeddings(self,
                              **kwargs: object) -> MultiModalEmbeddings:
    image_input = self._parse_and_validate_image_input(**kwargs)
    if image_input is None:
        return []

    return self._process_image_input(image_input, **kwargs)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/cohere2_vision.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

Cohere2VisionImagePixelInputs

Bases: TensorSchema

Dimensions
  • np: The total number of patches over each image over each prompt in the batch
  • c: Number of channels
  • h: Height of each image patch
  • w: Width of each image patch
  • bn: Batch size * number of images
Source code in vllm/model_executor/models/cohere2_vision.py
class Cohere2VisionImagePixelInputs(TensorSchema):
    """
    Dimensions:
        - np: The total number of patches over each image over each prompt in
              the batch
        - c: Number of channels
        - h: Height of each image patch
        - w: Width of each image patch
        - bn: Batch size * number of images
    """

    type: Literal["pixel_values"]

    pixel_values: Annotated[
        torch.Tensor,
        TensorShape("np", 3, "h", "w"),
    ]

    num_patches: Annotated[
        torch.Tensor,
        TensorShape("bn"),
    ]

num_patches instance-attribute

num_patches: Annotated[Tensor, TensorShape(bn)]

pixel_values instance-attribute

pixel_values: Annotated[Tensor, TensorShape(np, 3, h, w)]

type instance-attribute

type: Literal['pixel_values']

Cohere2VisionMultiModalProcessor

Bases: BaseMultiModalProcessor[Cohere2VisionProcessingInfo]

Source code in vllm/model_executor/models/cohere2_vision.py
class Cohere2VisionMultiModalProcessor(
        BaseMultiModalProcessor[Cohere2VisionProcessingInfo]):

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        processed_outputs = super()._call_hf_processor(
            prompt,
            mm_data,
            mm_kwargs,
            tok_kwargs,
        )

        # Ensure num_patches is available for proper tensor splitting
        if "num_patches" not in processed_outputs and (
                images := mm_data.get("images")) is not None:
            hf_processor = self.info.get_hf_processor(**mm_kwargs)

            # Fallback calculation if HF processor didn't provide num_patches
            parsed_images = self._get_data_parser().parse_mm_data({
                "image":
                images
            }).get_items("image", ImageProcessorItems)

            num_patches = [
                self.info.get_num_patches(
                    image_width=parsed_images.get_image_size(i).width,
                    image_height=parsed_images.get_image_size(i).height,
                    processor=hf_processor,
                ) for i in range(len(parsed_images))
            ]
            processed_outputs["num_patches"] = torch.tensor(num_patches)

        return processed_outputs

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        num_patches = hf_inputs.get("num_patches", torch.empty(0))
        return dict(
            pixel_values=MultiModalFieldConfig.flat_from_sizes(
                "image", num_patches),
            num_patches=MultiModalFieldConfig.batched("image"),
            image_embeds=MultiModalFieldConfig.batched("image"),
        )

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
        image_token = hf_processor.image_token
        img_tokens_per_tile = int(hf_processor.patch_size**2)
        img_line_break_token = hf_processor.img_line_break_token
        boi_token = hf_processor.boi_token
        eoi_token = hf_processor.eoi_token

        def get_replacement(item_idx: int):
            images = mm_items.get_items("image", ImageProcessorItems)
            image_size: ImageSize = images.get_image_size(item_idx)

            num_patches = self.info.get_num_patches(
                image_width=image_size.width,
                image_height=image_size.height,
                processor=hf_processor,
            )
            patch_tokens = (image_token * img_tokens_per_tile +
                            img_line_break_token)
            repl = f"{boi_token}{patch_tokens * num_patches}{eoi_token}"

            return PromptUpdateDetails.select_text(repl, image_token)

        return [
            PromptReplacement(
                modality="image",
                target=image_token,
                replacement=get_replacement,
            )
        ]

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/cohere2_vision.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:
    processed_outputs = super()._call_hf_processor(
        prompt,
        mm_data,
        mm_kwargs,
        tok_kwargs,
    )

    # Ensure num_patches is available for proper tensor splitting
    if "num_patches" not in processed_outputs and (
            images := mm_data.get("images")) is not None:
        hf_processor = self.info.get_hf_processor(**mm_kwargs)

        # Fallback calculation if HF processor didn't provide num_patches
        parsed_images = self._get_data_parser().parse_mm_data({
            "image":
            images
        }).get_items("image", ImageProcessorItems)

        num_patches = [
            self.info.get_num_patches(
                image_width=parsed_images.get_image_size(i).width,
                image_height=parsed_images.get_image_size(i).height,
                processor=hf_processor,
            ) for i in range(len(parsed_images))
        ]
        processed_outputs["num_patches"] = torch.tensor(num_patches)

    return processed_outputs

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/cohere2_vision.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    num_patches = hf_inputs.get("num_patches", torch.empty(0))
    return dict(
        pixel_values=MultiModalFieldConfig.flat_from_sizes(
            "image", num_patches),
        num_patches=MultiModalFieldConfig.batched("image"),
        image_embeds=MultiModalFieldConfig.batched("image"),
    )

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/cohere2_vision.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
    hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
    image_token = hf_processor.image_token
    img_tokens_per_tile = int(hf_processor.patch_size**2)
    img_line_break_token = hf_processor.img_line_break_token
    boi_token = hf_processor.boi_token
    eoi_token = hf_processor.eoi_token

    def get_replacement(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)
        image_size: ImageSize = images.get_image_size(item_idx)

        num_patches = self.info.get_num_patches(
            image_width=image_size.width,
            image_height=image_size.height,
            processor=hf_processor,
        )
        patch_tokens = (image_token * img_tokens_per_tile +
                        img_line_break_token)
        repl = f"{boi_token}{patch_tokens * num_patches}{eoi_token}"

        return PromptUpdateDetails.select_text(repl, image_token)

    return [
        PromptReplacement(
            modality="image",
            target=image_token,
            replacement=get_replacement,
        )
    ]

Cohere2VisionMultiModalProjector

Bases: Module

Multimodal projector that maps vision features to text embedding space.

Uses pixel shuffle downsampling followed by SwiGLU activation.

Source code in vllm/model_executor/models/cohere2_vision.py
class Cohere2VisionMultiModalProjector(nn.Module):
    """Multimodal projector that maps vision features to text embedding space.

    Uses pixel shuffle downsampling followed by SwiGLU activation.
    """

    def __init__(self, config: Cohere2VisionConfig, prefix: str = ""):
        super().__init__()
        self.downsample_factor = config.downsample_factor

        # Input dimension after pixel shuffle downsampling
        input_dim = config.vision_config.hidden_size * (
            config.downsample_factor**2)
        # MergedColumnParallelLinear expects the intermediate size to be a list
        # of sizes, so that it will load the weights as two separate linear
        # layers before applying any parallelism.
        # We need to divide the alignment intermediate size by 2 because
        # the weights are merged weights of two linear layers for SwiGLU.
        self.intermediate_size = config.alignment_intermediate_size // 2

        self.linear_1 = MergedColumnParallelLinear(
            input_dim,
            [self.intermediate_size] * 2,
            bias=True,
            return_bias=False,
            prefix=f"{prefix}.linear_1",
        )
        self.act = MulAndSilu()
        self.linear_2 = RowParallelLinear(
            self.intermediate_size,
            config.text_config.hidden_size,
            bias=True,
            return_bias=False,
            prefix=f"{prefix}.linear_2",
        )

    def forward(self, image_features):
        image_features = self.pixel_shuffle(image_features)
        hidden_states = self.linear_1(image_features)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states

    def pixel_shuffle(self, image_features: torch.Tensor) -> torch.Tensor:
        """Apply pixel shuffle downsampling to reduce spatial dimensions.

        Args:
            image_features: Input tensor of shape [B, S, D] where S = H*W

        Returns:
            Downsampled tensor with increased channel dimension
        """
        height = width = int(image_features.shape[1]**0.5)
        x = image_features.reshape(image_features.shape[0], width, height, -1)
        n, h, w, c = x.size()
        scale_factor = 1. / self.downsample_factor
        nh = int(h * scale_factor)
        nw = int(w * scale_factor)
        x = x.reshape(n, nh, self.downsample_factor, nw,
                      self.downsample_factor, c)
        x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
        x = x.reshape(n, nh, nw, -1)
        return x

act instance-attribute

act = MulAndSilu()

downsample_factor instance-attribute

downsample_factor = downsample_factor

intermediate_size instance-attribute

intermediate_size = alignment_intermediate_size // 2

linear_1 instance-attribute

linear_1 = MergedColumnParallelLinear(
    input_dim,
    [intermediate_size] * 2,
    bias=True,
    return_bias=False,
    prefix=f"{prefix}.linear_1",
)

linear_2 instance-attribute

linear_2 = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=True,
    return_bias=False,
    prefix=f"{prefix}.linear_2",
)

__init__

__init__(config: Cohere2VisionConfig, prefix: str = '')
Source code in vllm/model_executor/models/cohere2_vision.py
def __init__(self, config: Cohere2VisionConfig, prefix: str = ""):
    super().__init__()
    self.downsample_factor = config.downsample_factor

    # Input dimension after pixel shuffle downsampling
    input_dim = config.vision_config.hidden_size * (
        config.downsample_factor**2)
    # MergedColumnParallelLinear expects the intermediate size to be a list
    # of sizes, so that it will load the weights as two separate linear
    # layers before applying any parallelism.
    # We need to divide the alignment intermediate size by 2 because
    # the weights are merged weights of two linear layers for SwiGLU.
    self.intermediate_size = config.alignment_intermediate_size // 2

    self.linear_1 = MergedColumnParallelLinear(
        input_dim,
        [self.intermediate_size] * 2,
        bias=True,
        return_bias=False,
        prefix=f"{prefix}.linear_1",
    )
    self.act = MulAndSilu()
    self.linear_2 = RowParallelLinear(
        self.intermediate_size,
        config.text_config.hidden_size,
        bias=True,
        return_bias=False,
        prefix=f"{prefix}.linear_2",
    )

forward

forward(image_features)
Source code in vllm/model_executor/models/cohere2_vision.py
def forward(self, image_features):
    image_features = self.pixel_shuffle(image_features)
    hidden_states = self.linear_1(image_features)
    hidden_states = self.act(hidden_states)
    hidden_states = self.linear_2(hidden_states)
    return hidden_states

pixel_shuffle

pixel_shuffle(image_features: Tensor) -> Tensor

Apply pixel shuffle downsampling to reduce spatial dimensions.

Parameters:

Name Type Description Default
image_features Tensor

Input tensor of shape [B, S, D] where S = H*W

required

Returns:

Type Description
Tensor

Downsampled tensor with increased channel dimension

Source code in vllm/model_executor/models/cohere2_vision.py
def pixel_shuffle(self, image_features: torch.Tensor) -> torch.Tensor:
    """Apply pixel shuffle downsampling to reduce spatial dimensions.

    Args:
        image_features: Input tensor of shape [B, S, D] where S = H*W

    Returns:
        Downsampled tensor with increased channel dimension
    """
    height = width = int(image_features.shape[1]**0.5)
    x = image_features.reshape(image_features.shape[0], width, height, -1)
    n, h, w, c = x.size()
    scale_factor = 1. / self.downsample_factor
    nh = int(h * scale_factor)
    nw = int(w * scale_factor)
    x = x.reshape(n, nh, self.downsample_factor, nw,
                  self.downsample_factor, c)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous()
    x = x.reshape(n, nh, nw, -1)
    return x

Cohere2VisionProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/cohere2_vision.py
class Cohere2VisionProcessingInfo(BaseProcessingInfo):

    def get_hf_config(self) -> Cohere2VisionConfig:
        return self.ctx.get_hf_config(Cohere2VisionConfig)

    def get_hf_processor(self, **kwargs: object) -> Cohere2VisionProcessor:
        return self.ctx.get_hf_processor(Cohere2VisionProcessor, **kwargs)

    def get_image_processor(self, **kwargs: object):
        return self.get_hf_processor(**kwargs).image_processor

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        return {"image": None}

    def get_image_size_with_most_features(self) -> ImageSize:
        image_processor = self.get_image_processor()
        height = image_processor.size['height']
        width = image_processor.size['width']
        max_patches = image_processor.max_patches
        return ImageSize(height=height * max_patches, width=width)

    def get_num_patches(
        self,
        *,
        image_width: int,
        image_height: int,
        processor: Optional[Cohere2VisionProcessor],
    ) -> int:
        """
        Calculate the number of image patches for a given image.
        Uses the HF processor to determine the actual number of patches.
        """
        if processor is None:
            processor = self.get_hf_processor()

        image_processor = processor.image_processor

        # The current implementation of get_number_of_image_patches
        # is incorrect, so we patch it here.
        # TODO: Revert once
        # https://github.com/huggingface/transformers/pull/40312 is released.
        # return image_processor.get_number_of_image_patches(image_height,
        #                                                    image_width, {})

        min_patches = image_processor.min_patches
        max_patches = image_processor.max_patches
        patch_size = image_processor.size
        crop_to_patches = image_processor.crop_to_patches

        if not crop_to_patches:
            return 1

        num_columns, num_rows = get_optimal_tiled_canvas(
            (image_height, image_width),
            (patch_size["height"], patch_size["width"]),
            min_patches,
            max_patches,
        )
        num_patches = num_columns * num_rows
        if num_patches > 1:
            num_patches += 1  # Thumbnail image

        return num_patches

get_hf_config

get_hf_config() -> Cohere2VisionConfig
Source code in vllm/model_executor/models/cohere2_vision.py
def get_hf_config(self) -> Cohere2VisionConfig:
    return self.ctx.get_hf_config(Cohere2VisionConfig)

get_hf_processor

get_hf_processor(
    **kwargs: object,
) -> Cohere2VisionProcessor
Source code in vllm/model_executor/models/cohere2_vision.py
def get_hf_processor(self, **kwargs: object) -> Cohere2VisionProcessor:
    return self.ctx.get_hf_processor(Cohere2VisionProcessor, **kwargs)

get_image_processor

get_image_processor(**kwargs: object)
Source code in vllm/model_executor/models/cohere2_vision.py
def get_image_processor(self, **kwargs: object):
    return self.get_hf_processor(**kwargs).image_processor

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/cohere2_vision.py
def get_image_size_with_most_features(self) -> ImageSize:
    image_processor = self.get_image_processor()
    height = image_processor.size['height']
    width = image_processor.size['width']
    max_patches = image_processor.max_patches
    return ImageSize(height=height * max_patches, width=width)

get_num_patches

get_num_patches(
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Cohere2VisionProcessor],
) -> int

Calculate the number of image patches for a given image. Uses the HF processor to determine the actual number of patches.

Source code in vllm/model_executor/models/cohere2_vision.py
def get_num_patches(
    self,
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Cohere2VisionProcessor],
) -> int:
    """
    Calculate the number of image patches for a given image.
    Uses the HF processor to determine the actual number of patches.
    """
    if processor is None:
        processor = self.get_hf_processor()

    image_processor = processor.image_processor

    # The current implementation of get_number_of_image_patches
    # is incorrect, so we patch it here.
    # TODO: Revert once
    # https://github.com/huggingface/transformers/pull/40312 is released.
    # return image_processor.get_number_of_image_patches(image_height,
    #                                                    image_width, {})

    min_patches = image_processor.min_patches
    max_patches = image_processor.max_patches
    patch_size = image_processor.size
    crop_to_patches = image_processor.crop_to_patches

    if not crop_to_patches:
        return 1

    num_columns, num_rows = get_optimal_tiled_canvas(
        (image_height, image_width),
        (patch_size["height"], patch_size["width"]),
        min_patches,
        max_patches,
    )
    num_patches = num_columns * num_rows
    if num_patches > 1:
        num_patches += 1  # Thumbnail image

    return num_patches

get_supported_mm_limits

get_supported_mm_limits() -> Mapping[str, Optional[int]]
Source code in vllm/model_executor/models/cohere2_vision.py
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"image": None}