vllm.model_executor.models.gemma2
Gemma2Attention ¶
Bases: Module
Source code in vllm/model_executor/models/gemma2.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
logits_soft_cap=attn_logits_soft_cap,
per_layer_sliding_window=sliding_window,
prefix=f"{prefix}.attn",
)
o_proj instance-attribute
¶
o_proj = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=attention_bias,
quant_config=quant_config,
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=attention_bias,
quant_config=quant_config,
)
rotary_emb instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position_embeddings,
base=rope_theta,
is_neox_style=True,
)
__init__ ¶
__init__(
config: Gemma2Config,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int,
rope_theta: float,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
attn_logits_soft_cap: Optional[float] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/gemma2.py
forward ¶
Source code in vllm/model_executor/models/gemma2.py
Gemma2DecoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/gemma2.py
input_layernorm instance-attribute
¶
input_layernorm = GemmaRMSNorm(
hidden_size, eps=rms_norm_eps
)
mlp instance-attribute
¶
mlp = Gemma2MLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
hidden_activation=hidden_activation,
quant_config=quant_config,
)
post_attention_layernorm instance-attribute
¶
post_attention_layernorm = GemmaRMSNorm(
hidden_size, eps=rms_norm_eps
)
post_feedforward_layernorm instance-attribute
¶
post_feedforward_layernorm = GemmaRMSNorm(
hidden_size, eps=rms_norm_eps
)
pre_feedforward_layernorm instance-attribute
¶
pre_feedforward_layernorm = GemmaRMSNorm(
hidden_size, eps=rms_norm_eps
)
self_attn instance-attribute
¶
self_attn = Gemma2Attention(
config=config,
hidden_size=hidden_size,
num_heads=num_attention_heads,
num_kv_heads=num_key_value_heads,
head_dim=head_dim,
max_position_embeddings=max_position_embeddings,
rope_theta=rope_theta,
cache_config=cache_config,
quant_config=quant_config,
attn_logits_soft_cap=attn_logit_softcapping,
prefix=f"{prefix}.self_attn",
)
__init__ ¶
__init__(
config: Gemma2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/gemma2.py
forward ¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/gemma2.py
Gemma2ForCausalLM ¶
Bases: Module
, SupportsLoRA
, SupportsPP
Source code in vllm/model_executor/models/gemma2.py
logits_processor instance-attribute
¶
logits_processor = LogitsProcessor(
vocab_size, soft_cap=final_logit_softcapping
)
make_empty_intermediate_tensors instance-attribute
¶
model instance-attribute
¶
model = Gemma2Model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
packed_modules_mapping class-attribute
instance-attribute
¶
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gemma2.py
compute_logits ¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/gemma2.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/gemma2.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/gemma2.py
Gemma2MLP ¶
Bases: Module
Source code in vllm/model_executor/models/gemma2.py
down_proj instance-attribute
¶
down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
)
gate_up_proj instance-attribute
¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
__init__ ¶
__init__(
hidden_size: int,
intermediate_size: int,
hidden_act: str,
hidden_activation: str,
quant_config: Optional[QuantizationConfig] = None,
) -> None
Source code in vllm/model_executor/models/gemma2.py
Gemma2Model ¶
Bases: Module
Source code in vllm/model_executor/models/gemma2.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], hidden_size
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gemma2.py
forward ¶
forward(
input_ids: Optional[Tensor],
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]