Skip to content

vllm.model_executor.models.glm4_moe

Inference-only GLM-4.5 model compatible with HuggingFace weights.

logger module-attribute

logger = init_logger(__name__)

Glm4MoE

Bases: Module

Source code in vllm/model_executor/models/glm4_moe.py
class Glm4MoE(nn.Module):

    def __init__(
        self,
        config: Glm4MoeConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        enable_eplb: bool = False,
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor

        self.ep_group = get_ep_group().device_group
        self.ep_rank = self.ep_group.rank()
        self.ep_size = self.ep_group.size()
        self.n_routed_experts: int = config.n_routed_experts
        self.n_shared_experts: int = config.n_shared_experts

        if config.hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {config.hidden_act}. "
                             "Only silu is supported for now.")
        # NOTE In the transformers implementation, the gate isn't an nn.Linear,
        # so we cannot use ReplicatedLinear here.
        # See: https://github.com/huggingface/transformers/blob/v4.55.1/src/transformers/models/glm4_moe/modeling_glm4_moe.py#L260
        self.gate = nn.Linear(
            config.hidden_size,
            config.n_routed_experts,
            bias=False,
            dtype=torch.float32,
        )
        self.gate.e_score_correction_bias = nn.Parameter(
            torch.empty(config.n_routed_experts, dtype=torch.float32))

        # Load balancing settings.
        vllm_config = get_current_vllm_config()
        eplb_config = vllm_config.parallel_config.eplb_config
        self.enable_eplb = enable_eplb

        self.n_redundant_experts = eplb_config.num_redundant_experts
        self.n_logical_experts = self.n_routed_experts
        self.n_physical_experts = (self.n_logical_experts +
                                   self.n_redundant_experts)
        self.n_local_physical_experts = self.n_physical_experts // self.ep_size

        self.physical_expert_start = (self.ep_rank *
                                      self.n_local_physical_experts)
        self.physical_expert_end = (self.physical_expert_start +
                                    self.n_local_physical_experts)

        self.experts = FusedMoE(
            num_experts=config.n_routed_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            reduce_results=False,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
            prefix=f"{prefix}.experts",
            scoring_func="sigmoid",
            e_score_correction_bias=self.gate.e_score_correction_bias,
            enable_eplb=self.enable_eplb,
            num_redundant_experts=self.n_redundant_experts)

        if config.n_shared_experts is not None:
            intermediate_size = (config.moe_intermediate_size *
                                 config.n_shared_experts)
            self.shared_experts = Glm4MoeMLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=self.experts.must_reduce_shared_expert_outputs(
                ),
                prefix=f"{prefix}.shared_experts",
            )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)

        if self.n_shared_experts is not None:
            shared_output = self.shared_experts(hidden_states)
        router_logits = self.gate(hidden_states.to(dtype=torch.float32))
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            router_logits=router_logits) * self.routed_scaling_factor
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = (
                self.experts.maybe_all_reduce_tensor_model_parallel(
                    final_hidden_states))
        return final_hidden_states.view(num_tokens, hidden_dim)

enable_eplb instance-attribute

enable_eplb = enable_eplb

ep_group instance-attribute

ep_group = device_group

ep_rank instance-attribute

ep_rank = rank()

ep_size instance-attribute

ep_size = size()

experts instance-attribute

experts = FusedMoE(
    num_experts=n_routed_experts,
    top_k=num_experts_per_tok,
    hidden_size=hidden_size,
    intermediate_size=moe_intermediate_size,
    reduce_results=False,
    renormalize=norm_topk_prob,
    quant_config=quant_config,
    use_grouped_topk=True,
    num_expert_group=n_group,
    topk_group=topk_group,
    prefix=f"{prefix}.experts",
    scoring_func="sigmoid",
    e_score_correction_bias=e_score_correction_bias,
    enable_eplb=enable_eplb,
    num_redundant_experts=n_redundant_experts,
)

gate instance-attribute

gate = Linear(
    hidden_size, n_routed_experts, bias=False, dtype=float32
)

n_local_physical_experts instance-attribute

n_local_physical_experts = n_physical_experts // ep_size

n_logical_experts instance-attribute

n_logical_experts = n_routed_experts

n_physical_experts instance-attribute

n_physical_experts = n_logical_experts + n_redundant_experts

n_redundant_experts instance-attribute

n_redundant_experts = num_redundant_experts

n_routed_experts instance-attribute

n_routed_experts: int = n_routed_experts

n_shared_experts instance-attribute

n_shared_experts: int = n_shared_experts

physical_expert_end instance-attribute

physical_expert_end = (
    physical_expert_start + n_local_physical_experts
)

physical_expert_start instance-attribute

physical_expert_start = ep_rank * n_local_physical_experts

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

shared_experts instance-attribute

shared_experts = Glm4MoeMLP(
    hidden_size=hidden_size,
    intermediate_size=intermediate_size,
    hidden_act=hidden_act,
    quant_config=quant_config,
    reduce_results=must_reduce_shared_expert_outputs(),
    prefix=f"{prefix}.shared_experts",
)

tp_size instance-attribute

__init__

__init__(
    config: Glm4MoeConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
)
Source code in vllm/model_executor/models/glm4_moe.py
def __init__(
    self,
    config: Glm4MoeConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
):
    super().__init__()
    self.tp_size = get_tensor_model_parallel_world_size()
    self.routed_scaling_factor = config.routed_scaling_factor

    self.ep_group = get_ep_group().device_group
    self.ep_rank = self.ep_group.rank()
    self.ep_size = self.ep_group.size()
    self.n_routed_experts: int = config.n_routed_experts
    self.n_shared_experts: int = config.n_shared_experts

    if config.hidden_act != "silu":
        raise ValueError(f"Unsupported activation: {config.hidden_act}. "
                         "Only silu is supported for now.")
    # NOTE In the transformers implementation, the gate isn't an nn.Linear,
    # so we cannot use ReplicatedLinear here.
    # See: https://github.com/huggingface/transformers/blob/v4.55.1/src/transformers/models/glm4_moe/modeling_glm4_moe.py#L260
    self.gate = nn.Linear(
        config.hidden_size,
        config.n_routed_experts,
        bias=False,
        dtype=torch.float32,
    )
    self.gate.e_score_correction_bias = nn.Parameter(
        torch.empty(config.n_routed_experts, dtype=torch.float32))

    # Load balancing settings.
    vllm_config = get_current_vllm_config()
    eplb_config = vllm_config.parallel_config.eplb_config
    self.enable_eplb = enable_eplb

    self.n_redundant_experts = eplb_config.num_redundant_experts
    self.n_logical_experts = self.n_routed_experts
    self.n_physical_experts = (self.n_logical_experts +
                               self.n_redundant_experts)
    self.n_local_physical_experts = self.n_physical_experts // self.ep_size

    self.physical_expert_start = (self.ep_rank *
                                  self.n_local_physical_experts)
    self.physical_expert_end = (self.physical_expert_start +
                                self.n_local_physical_experts)

    self.experts = FusedMoE(
        num_experts=config.n_routed_experts,
        top_k=config.num_experts_per_tok,
        hidden_size=config.hidden_size,
        intermediate_size=config.moe_intermediate_size,
        reduce_results=False,
        renormalize=config.norm_topk_prob,
        quant_config=quant_config,
        use_grouped_topk=True,
        num_expert_group=config.n_group,
        topk_group=config.topk_group,
        prefix=f"{prefix}.experts",
        scoring_func="sigmoid",
        e_score_correction_bias=self.gate.e_score_correction_bias,
        enable_eplb=self.enable_eplb,
        num_redundant_experts=self.n_redundant_experts)

    if config.n_shared_experts is not None:
        intermediate_size = (config.moe_intermediate_size *
                             config.n_shared_experts)
        self.shared_experts = Glm4MoeMLP(
            hidden_size=config.hidden_size,
            intermediate_size=intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            reduce_results=self.experts.must_reduce_shared_expert_outputs(
            ),
            prefix=f"{prefix}.shared_experts",
        )

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/glm4_moe.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    num_tokens, hidden_dim = hidden_states.shape
    hidden_states = hidden_states.view(-1, hidden_dim)

    if self.n_shared_experts is not None:
        shared_output = self.shared_experts(hidden_states)
    router_logits = self.gate(hidden_states.to(dtype=torch.float32))
    final_hidden_states = self.experts(
        hidden_states=hidden_states,
        router_logits=router_logits) * self.routed_scaling_factor
    if shared_output is not None:
        final_hidden_states = final_hidden_states + shared_output
    if self.tp_size > 1:
        final_hidden_states = (
            self.experts.maybe_all_reduce_tensor_model_parallel(
                final_hidden_states))
    return final_hidden_states.view(num_tokens, hidden_dim)

Glm4MoeAttention

Bases: Module

Source code in vllm/model_executor/models/glm4_moe.py
class Glm4MoeAttention(nn.Module):

    def __init__(
        self,
        config: Glm4MoeConfig,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 131072,
        head_dim: Optional[int] = None,
        rms_norm_eps: float = 1e-05,
        qkv_bias: bool = False,
        use_qk_norm: bool = False,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim or (hidden_size // self.total_num_heads)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings
        self.use_qk_norm = use_qk_norm

        self.qkv_proj = QKVParallelLinear(hidden_size,
                                          self.head_dim,
                                          self.total_num_heads,
                                          self.total_num_kv_heads,
                                          bias=qkv_bias,
                                          quant_config=quant_config,
                                          prefix=f"{prefix}.qkv_proj")

        self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                        hidden_size,
                                        bias=False,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.o_proj")

        partial_rotary_factor = getattr(config, "partial_rotary_factor", 0.5)
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            partial_rotary_factor=partial_rotary_factor,
        )
        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.attn",
        )

        if self.use_qk_norm:
            self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
            self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        if self.use_qk_norm:
            q = self.q_norm(q.reshape(-1, self.num_heads,
                                      self.head_dim)).reshape(q.shape)
            k = self.k_norm(k.reshape(-1, self.num_kv_heads,
                                      self.head_dim)).reshape(k.shape)

        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

head_dim instance-attribute

head_dim = head_dim or hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

k_norm instance-attribute

k_norm = RMSNorm(head_dim, eps=rms_norm_eps)

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_norm instance-attribute

q_norm = RMSNorm(head_dim, eps=rms_norm_eps)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    total_num_kv_heads,
    bias=qkv_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
    rope_scaling=rope_scaling,
    partial_rotary_factor=partial_rotary_factor,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_kv_heads

use_qk_norm instance-attribute

use_qk_norm = use_qk_norm

__init__

__init__(
    config: Glm4MoeConfig,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 131072,
    head_dim: Optional[int] = None,
    rms_norm_eps: float = 1e-05,
    qkv_bias: bool = False,
    use_qk_norm: bool = False,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/glm4_moe.py
def __init__(
    self,
    config: Glm4MoeConfig,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 131072,
    head_dim: Optional[int] = None,
    rms_norm_eps: float = 1e-05,
    qkv_bias: bool = False,
    use_qk_norm: bool = False,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.hidden_size = hidden_size
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = num_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    self.total_num_kv_heads = num_kv_heads
    if self.total_num_kv_heads >= tp_size:
        # Number of KV heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_kv_heads % tp_size == 0
    else:
        # Number of KV heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    self.head_dim = head_dim or (hidden_size // self.total_num_heads)
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5
    self.rope_theta = rope_theta
    self.max_position_embeddings = max_position_embeddings
    self.use_qk_norm = use_qk_norm

    self.qkv_proj = QKVParallelLinear(hidden_size,
                                      self.head_dim,
                                      self.total_num_heads,
                                      self.total_num_kv_heads,
                                      bias=qkv_bias,
                                      quant_config=quant_config,
                                      prefix=f"{prefix}.qkv_proj")

    self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                    hidden_size,
                                    bias=False,
                                    quant_config=quant_config,
                                    prefix=f"{prefix}.o_proj")

    partial_rotary_factor = getattr(config, "partial_rotary_factor", 0.5)
    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=max_position_embeddings,
        base=rope_theta,
        rope_scaling=rope_scaling,
        partial_rotary_factor=partial_rotary_factor,
    )
    self.attn = Attention(
        self.num_heads,
        self.head_dim,
        self.scaling,
        num_kv_heads=self.num_kv_heads,
        cache_config=cache_config,
        quant_config=quant_config,
        prefix=f"{prefix}.attn",
    )

    if self.use_qk_norm:
        self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
        self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/glm4_moe.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    if self.use_qk_norm:
        q = self.q_norm(q.reshape(-1, self.num_heads,
                                  self.head_dim)).reshape(q.shape)
        k = self.k_norm(k.reshape(-1, self.num_kv_heads,
                                  self.head_dim)).reshape(k.shape)

    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

Glm4MoeDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/glm4_moe.py
class Glm4MoeDecoderLayer(nn.Module):

    def __init__(
        self,
        config: Glm4MoeConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        enable_eplb: bool = False,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          131072)
        # DecoderLayers are created with `make_layers` which passes the prefix
        # with the layer's index.
        layer_idx = int(prefix.split(sep='.')[-1])
        self.layer_idx = layer_idx

        self.self_attn = Glm4MoeAttention(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            head_dim=config.head_dim,
            rms_norm_eps=config.rms_norm_eps,
            qkv_bias=config.attention_bias,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
            use_qk_norm=config.use_qk_norm,
        )

        if (config.n_routed_experts is not None
                and layer_idx >= config.first_k_dense_replace):
            self.mlp = Glm4MoE(
                config=config,
                quant_config=quant_config,
                prefix=f"{prefix}.mlp",
                enable_eplb=enable_eplb,
            )
        else:
            self.mlp = Glm4MoeMLP(hidden_size=config.hidden_size,
                                  intermediate_size=config.intermediate_size,
                                  hidden_act=config.hidden_act,
                                  quant_config=quant_config,
                                  prefix=f"{prefix}.mlp")

        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)
        self.routed_scaling_factor = config.routed_scaling_factor

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(positions=positions,
                                       hidden_states=hidden_states)
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

layer_idx instance-attribute

layer_idx = layer_idx

mlp instance-attribute

mlp = Glm4MoE(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
    enable_eplb=enable_eplb,
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

self_attn instance-attribute

self_attn = Glm4MoeAttention(
    config=config,
    hidden_size=hidden_size,
    num_heads=num_attention_heads,
    num_kv_heads=num_key_value_heads,
    rope_theta=rope_theta,
    rope_scaling=rope_scaling,
    max_position_embeddings=max_position_embeddings,
    head_dim=head_dim,
    rms_norm_eps=rms_norm_eps,
    qkv_bias=attention_bias,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
    use_qk_norm=use_qk_norm,
)

__init__

__init__(
    config: Glm4MoeConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
) -> None
Source code in vllm/model_executor/models/glm4_moe.py
def __init__(
    self,
    config: Glm4MoeConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
) -> None:
    super().__init__()
    self.hidden_size = config.hidden_size
    rope_theta = getattr(config, "rope_theta", 10000)
    rope_scaling = getattr(config, "rope_scaling", None)
    max_position_embeddings = getattr(config, "max_position_embeddings",
                                      131072)
    # DecoderLayers are created with `make_layers` which passes the prefix
    # with the layer's index.
    layer_idx = int(prefix.split(sep='.')[-1])
    self.layer_idx = layer_idx

    self.self_attn = Glm4MoeAttention(
        config=config,
        hidden_size=self.hidden_size,
        num_heads=config.num_attention_heads,
        num_kv_heads=config.num_key_value_heads,
        rope_theta=rope_theta,
        rope_scaling=rope_scaling,
        max_position_embeddings=max_position_embeddings,
        head_dim=config.head_dim,
        rms_norm_eps=config.rms_norm_eps,
        qkv_bias=config.attention_bias,
        cache_config=cache_config,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
        use_qk_norm=config.use_qk_norm,
    )

    if (config.n_routed_experts is not None
            and layer_idx >= config.first_k_dense_replace):
        self.mlp = Glm4MoE(
            config=config,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
            enable_eplb=enable_eplb,
        )
    else:
        self.mlp = Glm4MoeMLP(hidden_size=config.hidden_size,
                              intermediate_size=config.intermediate_size,
                              hidden_act=config.hidden_act,
                              quant_config=quant_config,
                              prefix=f"{prefix}.mlp")

    self.input_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)
    self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                            eps=config.rms_norm_eps)
    self.routed_scaling_factor = config.routed_scaling_factor

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/glm4_moe.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(
            hidden_states, residual)
    hidden_states = self.self_attn(positions=positions,
                                   hidden_states=hidden_states)
    hidden_states, residual = self.post_attention_layernorm(
        hidden_states, residual)
    hidden_states = self.mlp(hidden_states)
    return hidden_states, residual

Glm4MoeForCausalLM

Bases: Module, SupportsPP, SupportsLoRA

Source code in vllm/model_executor/models/glm4_moe.py
class Glm4MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    fall_back_to_pt_during_load = False

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        self.quant_config = quant_config
        self.model = Glm4MoeModel(vllm_config=vllm_config,
                                  prefix=maybe_prefix(prefix, "model"))
        if get_pp_group().is_last_rank:
            self.lm_head = ParallelLMHead(config.vocab_size,
                                          config.hidden_size,
                                          quant_config=quant_config)
        else:
            self.lm_head = PPMissingLayer()
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)
        self.expert_weights = []

        # Set MoE hyperparameters
        self.num_moe_layers = (config.num_hidden_layers -
                               config.first_k_dense_replace)
        self.num_expert_groups = config.n_group

        self.moe_layers: list[FusedMoE] = []
        example_moe = None
        for layer in self.model.layers:
            if isinstance(layer, PPMissingLayer):
                continue

            assert isinstance(layer, Glm4MoeDecoderLayer)
            if isinstance(layer.mlp, Glm4MoE):
                # Pick last one layer since the first ones may be dense layers.
                example_moe = layer.mlp
                self.moe_layers.append(layer.mlp.experts)

        if example_moe is None:
            raise RuntimeError("No Glm4MoE layer found in model.layers.")

        self.num_logical_experts = example_moe.n_logical_experts
        self.num_physical_experts = example_moe.n_physical_experts
        self.num_local_physical_experts = example_moe.n_local_physical_experts
        self.num_routed_experts = example_moe.n_routed_experts
        self.num_shared_experts = example_moe.n_shared_experts
        self.num_redundant_experts = example_moe.n_redundant_experts

    def set_eplb_state(
        self,
        expert_load_view: torch.Tensor,
        logical_to_physical_map: torch.Tensor,
        logical_replica_count: torch.Tensor,
    ) -> None:
        for layer_idx, layer in enumerate(self.moe_layers):
            # Register the expert weights.
            self.expert_weights.append(layer.get_expert_weights())
            layer.set_eplb_state(
                moe_layer_idx=layer_idx,
                expert_load_view=expert_load_view,
                logical_to_physical_map=logical_to_physical_map,
                logical_replica_count=logical_replica_count,
            )

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, intermediate_tensors,
                                   inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

    def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
        return self.model.get_expert_mapping()

config instance-attribute

config = config

expert_weights instance-attribute

expert_weights = []

fall_back_to_pt_during_load class-attribute instance-attribute

fall_back_to_pt_during_load = False

lm_head instance-attribute

lm_head = ParallelLMHead(
    vocab_size, hidden_size, quant_config=quant_config
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = Glm4MoeModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

moe_layers instance-attribute

moe_layers: list[FusedMoE] = []

num_expert_groups instance-attribute

num_expert_groups = n_group

num_local_physical_experts instance-attribute

num_local_physical_experts = n_local_physical_experts

num_logical_experts instance-attribute

num_logical_experts = n_logical_experts

num_moe_layers instance-attribute

num_moe_layers = num_hidden_layers - first_k_dense_replace

num_physical_experts instance-attribute

num_physical_experts = n_physical_experts

num_redundant_experts instance-attribute

num_redundant_experts = n_redundant_experts

num_routed_experts instance-attribute

num_routed_experts = n_routed_experts

num_shared_experts instance-attribute

num_shared_experts = n_shared_experts

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/glm4_moe.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config
    self.quant_config = quant_config
    self.model = Glm4MoeModel(vllm_config=vllm_config,
                              prefix=maybe_prefix(prefix, "model"))
    if get_pp_group().is_last_rank:
        self.lm_head = ParallelLMHead(config.vocab_size,
                                      config.hidden_size,
                                      quant_config=quant_config)
    else:
        self.lm_head = PPMissingLayer()
    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)
    self.expert_weights = []

    # Set MoE hyperparameters
    self.num_moe_layers = (config.num_hidden_layers -
                           config.first_k_dense_replace)
    self.num_expert_groups = config.n_group

    self.moe_layers: list[FusedMoE] = []
    example_moe = None
    for layer in self.model.layers:
        if isinstance(layer, PPMissingLayer):
            continue

        assert isinstance(layer, Glm4MoeDecoderLayer)
        if isinstance(layer.mlp, Glm4MoE):
            # Pick last one layer since the first ones may be dense layers.
            example_moe = layer.mlp
            self.moe_layers.append(layer.mlp.experts)

    if example_moe is None:
        raise RuntimeError("No Glm4MoE layer found in model.layers.")

    self.num_logical_experts = example_moe.n_logical_experts
    self.num_physical_experts = example_moe.n_physical_experts
    self.num_local_physical_experts = example_moe.n_local_physical_experts
    self.num_routed_experts = example_moe.n_routed_experts
    self.num_shared_experts = example_moe.n_shared_experts
    self.num_redundant_experts = example_moe.n_redundant_experts

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/glm4_moe.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/glm4_moe.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.model(input_ids, positions, intermediate_tensors,
                               inputs_embeds)
    return hidden_states

get_expert_mapping

get_expert_mapping() -> list[tuple[str, str, int, str]]
Source code in vllm/model_executor/models/glm4_moe.py
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
    return self.model.get_expert_mapping()

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/glm4_moe.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/glm4_moe.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

set_eplb_state

set_eplb_state(
    expert_load_view: Tensor,
    logical_to_physical_map: Tensor,
    logical_replica_count: Tensor,
) -> None
Source code in vllm/model_executor/models/glm4_moe.py
def set_eplb_state(
    self,
    expert_load_view: torch.Tensor,
    logical_to_physical_map: torch.Tensor,
    logical_replica_count: torch.Tensor,
) -> None:
    for layer_idx, layer in enumerate(self.moe_layers):
        # Register the expert weights.
        self.expert_weights.append(layer.get_expert_weights())
        layer.set_eplb_state(
            moe_layer_idx=layer_idx,
            expert_load_view=expert_load_view,
            logical_to_physical_map=logical_to_physical_map,
            logical_replica_count=logical_replica_count,
        )

Glm4MoeMLP

Bases: Module

Source code in vllm/model_executor/models/glm4_moe.py
class Glm4MoeMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj")
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=False,
                                           quant_config=quant_config,
                                           reduce_results=reduce_results,
                                           prefix=f"{prefix}.down_proj")
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    reduce_results=reduce_results,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_up_proj",
)

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    reduce_results: bool = True,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/glm4_moe.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    reduce_results: bool = True,
    prefix: str = "",
) -> None:
    super().__init__()
    self.gate_up_proj = MergedColumnParallelLinear(
        hidden_size, [intermediate_size] * 2,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.gate_up_proj")
    self.down_proj = RowParallelLinear(intermediate_size,
                                       hidden_size,
                                       bias=False,
                                       quant_config=quant_config,
                                       reduce_results=reduce_results,
                                       prefix=f"{prefix}.down_proj")
    if hidden_act != "silu":
        raise ValueError(f"Unsupported activation: {hidden_act}. "
                         "Only silu is supported for now.")
    self.act_fn = SiluAndMul()

forward

forward(x)
Source code in vllm/model_executor/models/glm4_moe.py
def forward(self, x):
    gate_up, _ = self.gate_up_proj(x)
    x = self.act_fn(gate_up)
    x, _ = self.down_proj(x)
    return x

Glm4MoeModel

Bases: Module

Source code in vllm/model_executor/models/glm4_moe.py
@support_torch_compile(
    dynamic_arg_dims={
        "input_ids": 0,
        "positions": -1,
        "intermediate_tensors": 0,
        "inputs_embeds": 0,
    })
class Glm4MoeModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        enable_eplb = vllm_config.parallel_config.enable_eplb
        self.config = config

        self.vocab_size = config.vocab_size

        if get_pp_group().is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                prefix=f"{prefix}.embed_tokens")
        else:
            self.embed_tokens = PPMissingLayer()

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: Glm4MoeDecoderLayer(
                config=config,
                cache_config=cache_config,
                quant_config=quant_config,
                prefix=prefix,
                enable_eplb=enable_eplb,
            ),
            prefix=f"{prefix}.layers")

        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        for i in range(self.start_layer, self.end_layer):
            layer = self.layers[i]
            hidden_states, residual = layer(positions, hidden_states, residual)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })

        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

    def make_empty_intermediate_tensors(
            self, batch_size: int, dtype: torch.dtype,
            device: torch.device) -> IntermediateTensors:
        return IntermediateTensors({
            "hidden_states":
            torch.zeros((batch_size, self.config.hidden_size),
                        dtype=dtype,
                        device=device),
            "residual":
            torch.zeros((batch_size, self.config.hidden_size),
                        dtype=dtype,
                        device=device),
        })

    def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        return FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.n_routed_experts)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        expert_params_mapping = self.get_expert_mapping()
        for name, loaded_weight in weights:
            spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
            if spec_layer is not None:
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if (("mlp.experts." in name) and name not in params_dict):
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                is_expert_weight = False
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue

                    # Anyway, this is an expert weight and should not be
                    # attempted to load as other weights later
                    is_expert_weight = True

                    # Do not modify `name` since the loop may continue here
                    # Instead, create a new variable
                    name_mapped = name.replace(weight_name, param_name)

                    if is_pp_missing_parameter(name_mapped, self):
                        continue

                    param = params_dict[name_mapped]
                    # We should ask the weight loader to return success or not
                    # here since otherwise we may skip experts with other
                    # available replicas.
                    weight_loader = typing.cast(Callable[..., bool],
                                                param.weight_loader)
                    success = weight_loader(param,
                                            loaded_weight,
                                            name_mapped,
                                            shard_id=shard_id,
                                            expert_id=expert_id,
                                            return_success=True)
                    if success:
                        name = name_mapped
                        break
                else:
                    if is_expert_weight:
                        # We've checked that this is an expert weight
                        # However it's not mapped locally to this rank
                        # So we simply skip it
                        continue

                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

                    # Remapping the name of FP8 kv-scale.
                    name = maybe_remap_kv_scale_name(name, params_dict)
                    if name is None:
                        continue

                    if is_pp_missing_parameter(name, self):
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)

        return loaded_params

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size, prefix=f"{prefix}.embed_tokens"
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/glm4_moe.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    enable_eplb = vllm_config.parallel_config.enable_eplb
    self.config = config

    self.vocab_size = config.vocab_size

    if get_pp_group().is_first_rank:
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
            prefix=f"{prefix}.embed_tokens")
    else:
        self.embed_tokens = PPMissingLayer()

    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: Glm4MoeDecoderLayer(
            config=config,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=prefix,
            enable_eplb=enable_eplb,
        ),
        prefix=f"{prefix}.layers")

    if get_pp_group().is_last_rank:
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    else:
        self.norm = PPMissingLayer()
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size))

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/glm4_moe.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    for i in range(self.start_layer, self.end_layer):
        layer = self.layers[i]
        hidden_states, residual = layer(positions, hidden_states, residual)

    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual
        })

    hidden_states, _ = self.norm(hidden_states, residual)
    return hidden_states

get_expert_mapping

get_expert_mapping() -> list[tuple[str, str, int, str]]
Source code in vllm/model_executor/models/glm4_moe.py
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
    # Params for weights, fp8 weight scales, fp8 activation scales
    # (param_name, weight_name, expert_id, shard_id)
    return FusedMoE.make_expert_params_mapping(
        ckpt_gate_proj_name="gate_proj",
        ckpt_down_proj_name="down_proj",
        ckpt_up_proj_name="up_proj",
        num_experts=self.config.n_routed_experts)

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/glm4_moe.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/glm4_moe.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    expert_params_mapping = self.get_expert_mapping()
    for name, loaded_weight in weights:
        spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
        if spec_layer is not None:
            continue
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            # Skip non-stacked layers and experts (experts handled below).
            if weight_name not in name:
                continue
            # We have mlp.experts[0].gate_proj in the checkpoint.
            # Since we handle the experts below in expert_params_mapping,
            # we need to skip here BEFORE we update the name, otherwise
            # name will be updated to mlp.experts[0].gate_up_proj, which
            # will then be updated below in expert_params_mapping
            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
            if (("mlp.experts." in name) and name not in params_dict):
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            is_expert_weight = False
            for mapping in expert_params_mapping:
                param_name, weight_name, expert_id, shard_id = mapping
                if weight_name not in name:
                    continue

                # Anyway, this is an expert weight and should not be
                # attempted to load as other weights later
                is_expert_weight = True

                # Do not modify `name` since the loop may continue here
                # Instead, create a new variable
                name_mapped = name.replace(weight_name, param_name)

                if is_pp_missing_parameter(name_mapped, self):
                    continue

                param = params_dict[name_mapped]
                # We should ask the weight loader to return success or not
                # here since otherwise we may skip experts with other
                # available replicas.
                weight_loader = typing.cast(Callable[..., bool],
                                            param.weight_loader)
                success = weight_loader(param,
                                        loaded_weight,
                                        name_mapped,
                                        shard_id=shard_id,
                                        expert_id=expert_id,
                                        return_success=True)
                if success:
                    name = name_mapped
                    break
            else:
                if is_expert_weight:
                    # We've checked that this is an expert weight
                    # However it's not mapped locally to this rank
                    # So we simply skip it
                    continue

                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue

                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
        loaded_params.add(name)

    return loaded_params

make_empty_intermediate_tensors

make_empty_intermediate_tensors(
    batch_size: int, dtype: dtype, device: device
) -> IntermediateTensors
Source code in vllm/model_executor/models/glm4_moe.py
def make_empty_intermediate_tensors(
        self, batch_size: int, dtype: torch.dtype,
        device: torch.device) -> IntermediateTensors:
    return IntermediateTensors({
        "hidden_states":
        torch.zeros((batch_size, self.config.hidden_size),
                    dtype=dtype,
                    device=device),
        "residual":
        torch.zeros((batch_size, self.config.hidden_size),
                    dtype=dtype,
                    device=device),
    })

get_spec_layer_idx_from_weight_name

get_spec_layer_idx_from_weight_name(
    config: Glm4MoeConfig, weight_name: str
) -> Optional[int]
Source code in vllm/model_executor/models/glm4_moe.py
def get_spec_layer_idx_from_weight_name(config: Glm4MoeConfig,
                                        weight_name: str) -> Optional[int]:
    if hasattr(config,
               "num_nextn_predict_layers") and (config.num_nextn_predict_layers
                                                > 0):
        layer_idx = config.num_hidden_layers
        for i in range(config.num_nextn_predict_layers):
            if f"layers.{layer_idx+i}." in weight_name:
                return layer_idx + i
    return None