vllm.model_executor.models.gpt_bigcode
Inference-only GPTBigCode model compatible with HuggingFace weights.
GPTBigCodeAttention ¶
Bases: Module
Source code in vllm/model_executor/models/gpt_bigcode.py
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scale=scale,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
c_attn instance-attribute
¶
c_attn = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_attn",
)
c_proj instance-attribute
¶
c_proj = RowParallelLinear(
hidden_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
tensor_model_parallel_world_size instance-attribute
¶
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size()
)
__init__ ¶
__init__(
config: GPTBigCodeConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/gpt_bigcode.py
forward ¶
Source code in vllm/model_executor/models/gpt_bigcode.py
GPTBigCodeBlock ¶
Bases: Module
Source code in vllm/model_executor/models/gpt_bigcode.py
attn instance-attribute
¶
attn = GPTBigCodeAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attn",
)
__init__ ¶
__init__(
config: GPTBigCodeConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/gpt_bigcode.py
forward ¶
Source code in vllm/model_executor/models/gpt_bigcode.py
GPTBigCodeForCausalLM ¶
Bases: Module
, SupportsLoRA
, SupportsPP
Source code in vllm/model_executor/models/gpt_bigcode.py
logits_processor instance-attribute
¶
logits_processor = LogitsProcessor(
unpadded_vocab_size, vocab_size
)
make_empty_intermediate_tensors instance-attribute
¶
packed_modules_mapping class-attribute
instance-attribute
¶
transformer instance-attribute
¶
transformer = GPTBigCodeModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt_bigcode.py
compute_logits ¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/gpt_bigcode.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/gpt_bigcode.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/gpt_bigcode.py
GPTBigCodeModel ¶
Bases: Module
Source code in vllm/model_executor/models/gpt_bigcode.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], n_embd
)
)
wte instance-attribute
¶
wte = VocabParallelEmbedding(
vocab_size, embed_dim, org_num_embeddings=vocab_size
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/gpt_bigcode.py
forward ¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/gpt_bigcode.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/gpt_bigcode.py
GPTBigMLP ¶
Bases: Module
Source code in vllm/model_executor/models/gpt_bigcode.py
c_fc instance-attribute
¶
c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_fc",
)
c_proj instance-attribute
¶
c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
__init__ ¶
__init__(
intermediate_size: int,
config: GPTBigCodeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)