Skip to content

vllm.model_executor.models.hyperclovax_vision

EOT module-attribute

EOT = '<|endofturn|>'

HCXVisionMultimodalInputs module-attribute

HCXVisionMultimodalInputs = Union[
    HCXVisionMultimodalPixelInputs
]

IMAGE_TOKEN module-attribute

IMAGE_TOKEN: str = '<|dummy3|>'

Unpack module-attribute

Unpack = Unpack

VIDEO_TOKEN module-attribute

VIDEO_TOKEN: str = '<|_unuse_missing_100270|>'

HCXVisionCAbstractor

Bases: Module

This module is based on C-Abstractor, whose license is under apache-2.0. You can check the original code at https://github.com/khanrc/honeybee/blob/main/honeybee/projectors/projectors.py and we made necessary modifications.

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionCAbstractor(nn.Module):
    """
    This module is based on C-Abstractor, whose license is under apache-2.0.
    You can check the original code at 
    https://github.com/khanrc/honeybee/blob/main/honeybee/projectors/projectors.py
    and we made necessary modifications.
    """

    def __init__(
        self,
        num_queries: int,
        num_input_tokens: int,
        encoder_hidden_size: int,
        hidden_size: int,
        output_hidden_size: int,
        pos_emb: bool = True,
        prenorm: bool = False,
    ):
        super().__init__()
        self.num_input_tokens = num_input_tokens
        self.output_hidden_size = output_hidden_size

        # Positional embedding
        if pos_emb:
            self.pos_emb = torch.nn.Parameter(
                torch.zeros(1, num_input_tokens, encoder_hidden_size))
            self.pos_emb.data.normal_(mean=0.0, std=0.02)
        else:
            self.pos_emb = None

        # (Optional) Pre-normalization layer
        if prenorm:
            self.prenorm = LayerNorm(encoder_hidden_size)
        else:
            self.prenorm = None

        self.build_net(num_queries, encoder_hidden_size, hidden_size,
                       output_hidden_size)
        self.dtype = next(self.parameters()).dtype

    def forward(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[list[list[int]]] = None,
        num_grids: Optional[list[int]] = None,
    ) -> torch.Tensor:
        if self.prenorm is not None:
            x = self.prenorm(x)

        if self.pos_emb is not None:
            x = x + self.pos_emb

        x = self._forward(
            x,
            num_queries_vis_abstractors=num_queries_vis_abstractors,
            num_grids=num_grids,
        )  # (B, L, output_hidden_size)

        return x

    def _forward(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[list[list[int]]] = None,
        num_grids: Optional[list[int]] = None,
    ) -> torch.Tensor:
        # x: [B, L, dim]
        B, L, dim = x.shape
        hw = int(L**0.5)
        x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)

        if num_queries_vis_abstractors is not None:
            assert num_grids is not None
            return self._forward_adaptive_num_query(
                x, num_queries_vis_abstractors, num_grids)

        x = self.net(x)
        x = rearrange(x, "b d h w -> b (h w) d")
        x = self.readout(x)
        return x

    def _forward_adaptive_num_query(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[list[list[int]]] = None,
        num_grids: Optional[list[int]] = None,
    ) -> list[torch.Tensor]:
        # self.net is consisted by 3 layers (s1, sampler, s2)
        assert len(self.net) == 3

        x = self.net[0](x)  # s1
        new_x = []
        for i, num_queries in enumerate(num_queries_vis_abstractors):
            hw = int(num_queries**0.5)
            sampler = nn.AdaptiveAvgPool2d((hw, hw))
            out = sampler(x[num_grids[i]:num_grids[i + 1], :])
            out = self.net[2](out)  # s2

            out = rearrange(out, "b d h w -> b (h w) d")
            out = self.readout(out)

            new_x.append(out)
        return new_x

    def build_net(
        self,
        n_queries: int,
        encoder_hidden_size: int,
        hidden_size: int,
        output_hidden_size: int,
        depth: int = 3,
        mlp_depth: int = 2,
    ):
        assert (n_queries**0.5).is_integer(
        ), f"n_queries must be square number. n_queries: {n_queries}"
        hw = int(n_queries**0.5)

        # RegBlock = ResBlock + SE
        RegBlock = partial(
            RegStage,
            stride=1,
            dilation=1,
            act_layer=nn.SiLU,
            norm_layer=LayerNorm2d,
        )

        s1 = RegBlock(
            depth,
            encoder_hidden_size,
            hidden_size,
        )
        sampler = nn.AdaptiveAvgPool2d((hw, hw))
        s2 = RegBlock(
            depth,
            hidden_size,
            hidden_size,
        )

        self.net = nn.Sequential(s1, sampler, s2)
        self.readout = self.build_mlp(mlp_depth, hidden_size,
                                      output_hidden_size)

    def build_mlp(
        self,
        depth: int,
        hidden_size: int,
        output_hidden_size: int,
    ):
        layers = [nn.Linear(hidden_size, output_hidden_size)]
        for _ in range(1, depth):
            layers.append(nn.SiLU())
            layers.append(nn.Linear(output_hidden_size, output_hidden_size))
        return nn.Sequential(*layers)

dtype instance-attribute

dtype = dtype

num_input_tokens instance-attribute

num_input_tokens = num_input_tokens

output_hidden_size instance-attribute

output_hidden_size = output_hidden_size

pos_emb instance-attribute

pos_emb = Parameter(
    zeros(1, num_input_tokens, encoder_hidden_size)
)

prenorm instance-attribute

prenorm = LayerNorm(encoder_hidden_size)

__init__

__init__(
    num_queries: int,
    num_input_tokens: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    pos_emb: bool = True,
    prenorm: bool = False,
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def __init__(
    self,
    num_queries: int,
    num_input_tokens: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    pos_emb: bool = True,
    prenorm: bool = False,
):
    super().__init__()
    self.num_input_tokens = num_input_tokens
    self.output_hidden_size = output_hidden_size

    # Positional embedding
    if pos_emb:
        self.pos_emb = torch.nn.Parameter(
            torch.zeros(1, num_input_tokens, encoder_hidden_size))
        self.pos_emb.data.normal_(mean=0.0, std=0.02)
    else:
        self.pos_emb = None

    # (Optional) Pre-normalization layer
    if prenorm:
        self.prenorm = LayerNorm(encoder_hidden_size)
    else:
        self.prenorm = None

    self.build_net(num_queries, encoder_hidden_size, hidden_size,
                   output_hidden_size)
    self.dtype = next(self.parameters()).dtype

_forward

_forward(
    x: Tensor,
    num_queries_vis_abstractors: Optional[
        list[list[int]]
    ] = None,
    num_grids: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _forward(
    self,
    x: torch.Tensor,
    num_queries_vis_abstractors: Optional[list[list[int]]] = None,
    num_grids: Optional[list[int]] = None,
) -> torch.Tensor:
    # x: [B, L, dim]
    B, L, dim = x.shape
    hw = int(L**0.5)
    x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)

    if num_queries_vis_abstractors is not None:
        assert num_grids is not None
        return self._forward_adaptive_num_query(
            x, num_queries_vis_abstractors, num_grids)

    x = self.net(x)
    x = rearrange(x, "b d h w -> b (h w) d")
    x = self.readout(x)
    return x

_forward_adaptive_num_query

_forward_adaptive_num_query(
    x: Tensor,
    num_queries_vis_abstractors: Optional[
        list[list[int]]
    ] = None,
    num_grids: Optional[list[int]] = None,
) -> list[Tensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _forward_adaptive_num_query(
    self,
    x: torch.Tensor,
    num_queries_vis_abstractors: Optional[list[list[int]]] = None,
    num_grids: Optional[list[int]] = None,
) -> list[torch.Tensor]:
    # self.net is consisted by 3 layers (s1, sampler, s2)
    assert len(self.net) == 3

    x = self.net[0](x)  # s1
    new_x = []
    for i, num_queries in enumerate(num_queries_vis_abstractors):
        hw = int(num_queries**0.5)
        sampler = nn.AdaptiveAvgPool2d((hw, hw))
        out = sampler(x[num_grids[i]:num_grids[i + 1], :])
        out = self.net[2](out)  # s2

        out = rearrange(out, "b d h w -> b (h w) d")
        out = self.readout(out)

        new_x.append(out)
    return new_x

build_mlp

build_mlp(
    depth: int, hidden_size: int, output_hidden_size: int
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def build_mlp(
    self,
    depth: int,
    hidden_size: int,
    output_hidden_size: int,
):
    layers = [nn.Linear(hidden_size, output_hidden_size)]
    for _ in range(1, depth):
        layers.append(nn.SiLU())
        layers.append(nn.Linear(output_hidden_size, output_hidden_size))
    return nn.Sequential(*layers)

build_net

build_net(
    n_queries: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    depth: int = 3,
    mlp_depth: int = 2,
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def build_net(
    self,
    n_queries: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    depth: int = 3,
    mlp_depth: int = 2,
):
    assert (n_queries**0.5).is_integer(
    ), f"n_queries must be square number. n_queries: {n_queries}"
    hw = int(n_queries**0.5)

    # RegBlock = ResBlock + SE
    RegBlock = partial(
        RegStage,
        stride=1,
        dilation=1,
        act_layer=nn.SiLU,
        norm_layer=LayerNorm2d,
    )

    s1 = RegBlock(
        depth,
        encoder_hidden_size,
        hidden_size,
    )
    sampler = nn.AdaptiveAvgPool2d((hw, hw))
    s2 = RegBlock(
        depth,
        hidden_size,
        hidden_size,
    )

    self.net = nn.Sequential(s1, sampler, s2)
    self.readout = self.build_mlp(mlp_depth, hidden_size,
                                  output_hidden_size)

forward

forward(
    x: Tensor,
    num_queries_vis_abstractors: Optional[
        list[list[int]]
    ] = None,
    num_grids: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward(
    self,
    x: torch.Tensor,
    num_queries_vis_abstractors: Optional[list[list[int]]] = None,
    num_grids: Optional[list[int]] = None,
) -> torch.Tensor:
    if self.prenorm is not None:
        x = self.prenorm(x)

    if self.pos_emb is not None:
        x = x + self.pos_emb

    x = self._forward(
        x,
        num_queries_vis_abstractors=num_queries_vis_abstractors,
        num_grids=num_grids,
    )  # (B, L, output_hidden_size)

    return x

HCXVisionDummyInputsBuilder

Bases: BaseDummyInputsBuilder[HCXVisionProcessingInfo]

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionDummyInputsBuilder(
        BaseDummyInputsBuilder[HCXVisionProcessingInfo]):

    def get_dummy_text(
        self,
        mm_counts: Mapping[str, int],
    ) -> str:
        dummy_text = IMAGE_TOKEN * mm_counts.get(
            "image", 0) + VIDEO_TOKEN * mm_counts.get("video", 0)
        return dummy_text

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)
        num_videos = mm_counts.get("video", 0)

        target_width, target_height = \
            self.info.get_image_size_with_most_features()
        target_num_frames = 32
        return {
            "image":
            self._get_dummy_images(
                width=target_width,
                height=target_height,
                num_images=num_images,
            ),
            "video":
            self._get_dummy_videos(
                width=target_width - 1,
                height=target_height - 1,
                num_frames=target_num_frames,
                num_videos=num_videos,
            )
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
    num_images = mm_counts.get("image", 0)
    num_videos = mm_counts.get("video", 0)

    target_width, target_height = \
        self.info.get_image_size_with_most_features()
    target_num_frames = 32
    return {
        "image":
        self._get_dummy_images(
            width=target_width,
            height=target_height,
            num_images=num_images,
        ),
        "video":
        self._get_dummy_videos(
            width=target_width - 1,
            height=target_height - 1,
            num_frames=target_num_frames,
            num_videos=num_videos,
        )
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_dummy_text(
    self,
    mm_counts: Mapping[str, int],
) -> str:
    dummy_text = IMAGE_TOKEN * mm_counts.get(
        "image", 0) + VIDEO_TOKEN * mm_counts.get("video", 0)
    return dummy_text

HCXVisionForCausalLM

Bases: Module, SupportsMultiModal, SupportsPP

Source code in vllm/model_executor/models/hyperclovax_vision.py
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
@MULTIMODAL_REGISTRY.register_processor(
    _build_hcxvision_hf_processor,
    info=_build_hcxvision_hf_info,
    dummy_inputs=HCXVisionDummyInputsBuilder)
class HCXVisionForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):

    packed_modules_mapping = {
        "qkv_proj": ["q_proj", "k_proj", "v_proj"],
        "gate_up_proj": ["gate_proj", "up_proj"]
    }

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
        **kwargs: Optional[Any],
    ) -> None:
        super().__init__()

        # init configs
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        # text_config
        text_config = config.text_config
        if text_config.model_type in ["gpt2", "hyperclovax", "llama"]:
            text_config._attn_implementation = "sdpa"
        if text_config.model_type != "hyperclovax":
            text_config.logits_scaling = 1.0
        # vision_config
        vision_config = config.vision_config
        vision_config.auto_map = {}
        vision_config.anyres = config.anyres
        vision_config.max_num_grids = config.max_num_grids
        self.dtype = vllm_config.model_config.dtype

        ## possible_resolution should be matched with preprocessor_config.json
        config.possible_resolutions = self._init_possible_resolutions(
            config, vision_config)

        # init models & parameters
        with no_init_weights():  # weight will be loaded in from_pretrained
            self.vision_model = init_vision_tower_for_hcxvision(
                vision_config,
                quant_config,
                use_nth_layer=getattr(config, "use_nth_layer", -1),
                require_post_norm=False,
                prefix=maybe_prefix(prefix, "vision_model"),
            )
        self.mm_projector = self._init_mm_projector(config, text_config,
                                                    vision_config)

        self.lm_head_vocab_size = getattr(text_config, "padded_vocab_size",
                                          text_config.vocab_size)
        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=text_config,
            prefix=maybe_prefix(prefix, "language_model"),
        )

        if config.anyres:
            self.image_newline = nn.Parameter(
                torch.empty(text_config.hidden_size, dtype=self.dtype))

        self.config = config
        self.vision_config = vision_config
        self.text_config = text_config

        # use_sum_loss = bool(kwargs.pop("use_sum_loss", False))
        # self.reduction = self._init_reduction_type(use_sum_loss)

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return IMAGE_TOKEN
        if modality.startswith("video"):
            return VIDEO_TOKEN

        raise ValueError("Only image or video modality is supported")

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(
        self,
        **kwargs: Unpack[HCXVisionMultimodalInputs],
    ) -> Optional[MultiModalEmbeddings]:

        multimodal_embeddings = list()
        if kwargs.get("pixel_values_images") is not None:
            for _pixel_values_images, _image_sizes_images in zip(
                    kwargs["pixel_values_images"],
                    kwargs["image_sizes_images"]):
                _pixel_values_images = _pixel_values_images.unsqueeze(dim=0)
                _image_sizes_images = _image_sizes_images.unsqueeze(dim=0)
                _len_pixel_values_images = [
                    len(pixel_value) for pixel_value in _pixel_values_images
                ]
                if isinstance(_image_sizes_images, torch.Tensor):
                    _image_sizes_images = _image_sizes_images.detach().cpu(
                    ).tolist()
                _multimodal_embeddings_images = self.forward_images(
                    pixel_values_images=_pixel_values_images,
                    image_sizes_images=_image_sizes_images,
                    len_pixel_values_images=_len_pixel_values_images,
                )
                _multimodal_embeddings_images = torch.cat(
                    _multimodal_embeddings_images, dim=0)
                multimodal_embeddings.append(_multimodal_embeddings_images)

        if kwargs.get("pixel_values_videos") is not None:
            for _pixel_values_videos, _vision_query_lengths_videos in zip(
                    kwargs["pixel_values_videos"],
                    kwargs["vision_query_lengths_videos"]):
                _len_pixel_values_videos = [
                    len(_vision_query_lengths)
                    for _vision_query_lengths in _vision_query_lengths_videos
                ]
                _c, _w, _h = _pixel_values_videos.shape[-3:]
                _pixel_values_videos = _pixel_values_videos.reshape(
                    sum(_len_pixel_values_videos), -1, _c, _w,
                    _h).unsqueeze(dim=0)
                _multimodal_embeddings_videos = self.forward_videos(
                    pixel_values_videos=_pixel_values_videos,
                    len_pixel_values_videos=_len_pixel_values_videos,
                )
                _multimodal_embeddings_videos = torch.cat(
                    _multimodal_embeddings_videos, dim=0)
                multimodal_embeddings.append(_multimodal_embeddings_videos)
        return multimodal_embeddings

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
        **kwargs,
    ) -> torch.Tensor:
        inputs_embeds = self.language_model.get_input_embeddings(input_ids)
        if (kwargs.get("pixel_values_images") is not None
                or kwargs.get("pixel_values_videos")
                is not None):  # v0 compatibility
            multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
        if multimodal_embeddings is not None:
            multimodal_embeddings = torch.cat(multimodal_embeddings, dim=0)
            _mask_image = input_ids == self.config.image_token_id
            _mask_video = input_ids == self.config.video_token_id
            assert _mask_image.sum() + _mask_video.sum() == len(
                multimodal_embeddings)

            if multimodal_embeddings.dtype != inputs_embeds.dtype:
                multimodal_embeddings = multimodal_embeddings.to(
                    dtype=inputs_embeds.dtype)
            if multimodal_embeddings.device != inputs_embeds.device:
                multimodal_embeddings = multimodal_embeddings.to(
                    device=inputs_embeds.device)

            if _mask_image.sum() > 0:
                inputs_embeds[
                    _mask_image] = multimodal_embeddings[:sum(_mask_image)]
            if _mask_video.sum() > 0:
                inputs_embeds[_mask_video] = multimodal_embeddings[
                    -sum(_mask_video):]
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner, this
        # condition is for v0 compatibility.
        elif inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings(input_ids=input_ids,
                                                      **kwargs)
            input_ids = None
        hidden_states = self.language_model.model(input_ids,
                                                  positions,
                                                  intermediate_tensors,
                                                  inputs_embeds=inputs_embeds)
        return hidden_states

    def forward_images(
        self,
        pixel_values_images: list[list[torch.FloatTensor]],
        image_sizes_images: list[list[tuple[int, int]]],
        len_pixel_values_images: list[int],
    ) -> list[list[torch.Tensor]]:
        if sum(len_pixel_values_images) == 0:
            return None

        concat_pixel_values_images = torch.cat(list(
            chain(*pixel_values_images)),
                                               dim=0)

        visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
        image_forward_outs = self.vision_model(
            concat_pixel_values_images)[:, visual_token_idx:]

        image_forward_outs = image_forward_outs.to(
            dtype=self.mm_projector.dtype)
        image_forward_outs = self.mm_projector(image_forward_outs)  # b (h w) d

        split_sizes = [
            pixel_value.shape[0] for pixel_value in chain(*pixel_values_images)
        ]
        image_forward_outs = torch.split(image_forward_outs,
                                         split_sizes,
                                         dim=0)

        # newline for anyres postprocessing
        image_features = anyres_postprocessing(
            image_forward_outs=image_forward_outs,
            image_sizes=[
                image_size for image_sizes in image_sizes_images
                for image_size in image_sizes
            ],
            num_queries_vis_abstractor=self.config.
            num_queries_vis_abstractor_image,
            unpad=self.config.unpad,
            patch_size=self.vision_config.patch_size,
            grid_size=self.vision_config.image_size,
            image_newline=self.image_newline,
            possible_resolutions=self.config.possible_resolutions,
        )
        return image_features

    def forward_videos(
        self,
        pixel_values_videos: list[list[torch.FloatTensor]],
        len_pixel_values_videos: list[int],
    ) -> list[torch.Tensor]:

        len_video_grids = sum(len_pixel_values_videos)
        if len_video_grids == 0:
            return None

        # Run Vision Model
        concat_pixel_values_videos = torch.cat(list(
            chain(*pixel_values_videos)),
                                               dim=0)

        visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
        video_forward_outs = self.vision_model(
            concat_pixel_values_videos)[:, visual_token_idx:]

        video_forward_outs = video_forward_outs.to(
            dtype=self.mm_projector.dtype)

        # Run MM-Projector
        # len(num_grids) == len(num_queries_vis_abstractors) + 1
        grid_idx = 0
        num_grids = [
            grid_idx
        ]  # e.g. [0, 9, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 56]
        num_queries_vis_abstractors = [
        ]  # e.g. [81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 81, 9]
        len_total_frames = video_forward_outs.shape[0]

        if self.config.first_last_frames_slow:
            # slowfast (first_last_frames_slow)
            assert len_total_frames != 0
            if len_total_frames <= 2:
                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_slow)
                grid_idx += len_total_frames
                num_grids.append(grid_idx)
            else:
                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_slow)
                grid_idx += 1
                num_grids.append(grid_idx)

                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_fast)
                grid_idx += len_total_frames - 2
                num_grids.append(grid_idx)

                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_slow)
                grid_idx += 1
                num_grids.append(grid_idx)
        else:
            # slowfast
            for pixel_values_frames in pixel_values_videos:
                for pixel_values_frame in pixel_values_frames:
                    if len(pixel_values_frame) > 0:
                        num_queries_vis_abstractors.append(
                            self.config.num_queries_vis_abstractor_video_slow)
                        grid_idx += 1
                        num_grids.append(grid_idx)
                        num_queries_vis_abstractors.append(
                            self.config.num_queries_vis_abstractor_video_fast)
                        grid_idx = grid_idx + len(pixel_values_frame) - 1
                        num_grids.append(grid_idx)

        video_forward_outs = self.mm_projector(video_forward_outs,
                                               num_queries_vis_abstractors,
                                               num_grids)

        video_features = []  # what we want to return
        target_features = []
        target_group_size = 0
        group_counter = 0
        video_groups = [
            len(frame) for frames in pixel_values_videos for frame in frames
        ]  # for concat video features after projector

        for forward_out in video_forward_outs:
            target_group_size += len(forward_out)
            target_features.append(forward_out.flatten(0, 1))

            video_group_size = video_groups[group_counter]
            if video_group_size == target_group_size:
                video_features.append(torch.cat(target_features, dim=0))
                target_features = []
                group_counter += 1
                target_group_size = 0

            elif video_group_size < target_group_size:
                raise RuntimeError(
                    f"{video_group_size=} < {target_group_size=}")

        assert len(target_features
                   ) == 0, f"target_features is not empty!! {target_features}"
        assert len(video_groups) == len(video_features)

        return video_features

    def _prepare_multimodal_kwargs(self, **kwargs: object):
        output = defaultdict(list)
        for k, v in kwargs.items():
            if len(v) < 1 or len(v[0]) < 1:
                continue  # if empty batch of empty sample

            new_k, is_video = k, False
            if (not k.endswith("_images") and not k.endswith("_videos")):
                pass
            else:
                new_k, is_video = k.split("_")[:-1], k.split("_")[-1]
                new_k = "_".join(new_k)
                is_video = is_video == "videos"

            for _sample_idx, _v in enumerate(v):  # batch -> sample
                if new_k not in ["pixel_values"]:
                    if len(output[new_k]) < _sample_idx + 1:
                        output[new_k].append(list())
                    _v = _v.detach().cpu().numpy().tolist()
                    output[new_k][_sample_idx] += _v
                elif isinstance(_v, torch.Tensor):
                    if len(output[new_k]) < _sample_idx + 1:
                        output[new_k].append(list())
                        output["is_videos"].append(list())
                    _v = list(torch.unbind(_v, dim=0))
                    output[new_k][_sample_idx] += _v
                    output["is_videos"][_sample_idx] += [
                        is_video,
                    ] * len(_v)
        return dict(output)

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)

    def load_weights(
        self,
        weights: Iterable[tuple[str, torch.Tensor]],
    ) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

    def _init_possible_resolutions(
        self,
        config,
        vision_config,
    ):
        if not getattr(config, "possible_resolutions", []):
            possible_resolutions = []
            if config.anyres:
                assert config.max_num_grids > 0
                for i in range(1, config.max_num_grids + 1):
                    for j in range(1, config.max_num_grids + 1):
                        if i == 1 and j == 1 and not config.use_1x1_grid:
                            continue
                        if i * j <= config.max_num_grids:
                            possible_resolutions.append([i, j])

                possible_resolutions = [[
                    ys * vision_config.image_size,
                    xs * vision_config.image_size
                ] for ys, xs in possible_resolutions]
            return possible_resolutions
        else:
            return config.possible_resolutions

    def _init_mm_projector(
        self,
        config,
        text_config,
        vision_config,
    ):
        input_hidden_size = vision_config.hidden_size
        if config.mm_projector_type == "linear":
            mm_projector = nn.Linear(input_hidden_size,
                                     text_config.hidden_size)
            mm_projector.dtype = next(mm_projector.parameters()).dtype
        elif config.mm_projector_type == "cabstractor":
            mm_projector = HCXVisionCAbstractor(
                num_queries=config.num_queries_vis_abstractor_image,
                num_input_tokens=(vision_config.image_size //
                                  vision_config.patch_size)**2,
                encoder_hidden_size=input_hidden_size,
                hidden_size=input_hidden_size,
                output_hidden_size=text_config.hidden_size,
                pos_emb=config.proj_pos_emb,
                prenorm=config.proj_prenorm,
            )
        else:
            mm_projector = HCXVisionMlp(
                config.mm_projector_type,
                input_hidden_size,
                hidden_features=input_hidden_size,
                out_features=self.text_config.hidden_size,
            )
        return mm_projector

config instance-attribute

config = config

dtype instance-attribute

dtype = dtype

image_newline instance-attribute

image_newline = Parameter(empty(hidden_size, dtype=dtype))

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "language_model"),
)

lm_head_vocab_size instance-attribute

lm_head_vocab_size = getattr(
    text_config, "padded_vocab_size", vocab_size
)

mm_projector instance-attribute

mm_projector = _init_mm_projector(
    config, text_config, vision_config
)

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

text_config instance-attribute

text_config = text_config

vision_config instance-attribute

vision_config = vision_config

vision_model instance-attribute

vision_model = init_vision_tower_for_hcxvision(
    vision_config,
    quant_config,
    use_nth_layer=getattr(config, "use_nth_layer", -1),
    require_post_norm=False,
    prefix=maybe_prefix(prefix, "vision_model"),
)

__init__

__init__(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    **kwargs: Optional[Any],
) -> None
Source code in vllm/model_executor/models/hyperclovax_vision.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    **kwargs: Optional[Any],
) -> None:
    super().__init__()

    # init configs
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    # text_config
    text_config = config.text_config
    if text_config.model_type in ["gpt2", "hyperclovax", "llama"]:
        text_config._attn_implementation = "sdpa"
    if text_config.model_type != "hyperclovax":
        text_config.logits_scaling = 1.0
    # vision_config
    vision_config = config.vision_config
    vision_config.auto_map = {}
    vision_config.anyres = config.anyres
    vision_config.max_num_grids = config.max_num_grids
    self.dtype = vllm_config.model_config.dtype

    ## possible_resolution should be matched with preprocessor_config.json
    config.possible_resolutions = self._init_possible_resolutions(
        config, vision_config)

    # init models & parameters
    with no_init_weights():  # weight will be loaded in from_pretrained
        self.vision_model = init_vision_tower_for_hcxvision(
            vision_config,
            quant_config,
            use_nth_layer=getattr(config, "use_nth_layer", -1),
            require_post_norm=False,
            prefix=maybe_prefix(prefix, "vision_model"),
        )
    self.mm_projector = self._init_mm_projector(config, text_config,
                                                vision_config)

    self.lm_head_vocab_size = getattr(text_config, "padded_vocab_size",
                                      text_config.vocab_size)
    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=text_config,
        prefix=maybe_prefix(prefix, "language_model"),
    )

    if config.anyres:
        self.image_newline = nn.Parameter(
            torch.empty(text_config.hidden_size, dtype=self.dtype))

    self.config = config
    self.vision_config = vision_config
    self.text_config = text_config

_init_mm_projector

_init_mm_projector(config, text_config, vision_config)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _init_mm_projector(
    self,
    config,
    text_config,
    vision_config,
):
    input_hidden_size = vision_config.hidden_size
    if config.mm_projector_type == "linear":
        mm_projector = nn.Linear(input_hidden_size,
                                 text_config.hidden_size)
        mm_projector.dtype = next(mm_projector.parameters()).dtype
    elif config.mm_projector_type == "cabstractor":
        mm_projector = HCXVisionCAbstractor(
            num_queries=config.num_queries_vis_abstractor_image,
            num_input_tokens=(vision_config.image_size //
                              vision_config.patch_size)**2,
            encoder_hidden_size=input_hidden_size,
            hidden_size=input_hidden_size,
            output_hidden_size=text_config.hidden_size,
            pos_emb=config.proj_pos_emb,
            prenorm=config.proj_prenorm,
        )
    else:
        mm_projector = HCXVisionMlp(
            config.mm_projector_type,
            input_hidden_size,
            hidden_features=input_hidden_size,
            out_features=self.text_config.hidden_size,
        )
    return mm_projector

_init_possible_resolutions

_init_possible_resolutions(config, vision_config)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _init_possible_resolutions(
    self,
    config,
    vision_config,
):
    if not getattr(config, "possible_resolutions", []):
        possible_resolutions = []
        if config.anyres:
            assert config.max_num_grids > 0
            for i in range(1, config.max_num_grids + 1):
                for j in range(1, config.max_num_grids + 1):
                    if i == 1 and j == 1 and not config.use_1x1_grid:
                        continue
                    if i * j <= config.max_num_grids:
                        possible_resolutions.append([i, j])

            possible_resolutions = [[
                ys * vision_config.image_size,
                xs * vision_config.image_size
            ] for ys, xs in possible_resolutions]
        return possible_resolutions
    else:
        return config.possible_resolutions

_prepare_multimodal_kwargs

_prepare_multimodal_kwargs(**kwargs: object)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _prepare_multimodal_kwargs(self, **kwargs: object):
    output = defaultdict(list)
    for k, v in kwargs.items():
        if len(v) < 1 or len(v[0]) < 1:
            continue  # if empty batch of empty sample

        new_k, is_video = k, False
        if (not k.endswith("_images") and not k.endswith("_videos")):
            pass
        else:
            new_k, is_video = k.split("_")[:-1], k.split("_")[-1]
            new_k = "_".join(new_k)
            is_video = is_video == "videos"

        for _sample_idx, _v in enumerate(v):  # batch -> sample
            if new_k not in ["pixel_values"]:
                if len(output[new_k]) < _sample_idx + 1:
                    output[new_k].append(list())
                _v = _v.detach().cpu().numpy().tolist()
                output[new_k][_sample_idx] += _v
            elif isinstance(_v, torch.Tensor):
                if len(output[new_k]) < _sample_idx + 1:
                    output[new_k].append(list())
                    output["is_videos"].append(list())
                _v = list(torch.unbind(_v, dim=0))
                output[new_k][_sample_idx] += _v
                output["is_videos"][_sample_idx] += [
                    is_video,
                ] * len(_v)
    return dict(output)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states,
                                              sampling_metadata)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
    if intermediate_tensors is not None:
        inputs_embeds = None

    # NOTE: In v1, inputs_embeds is always generated at model runner, this
    # condition is for v0 compatibility.
    elif inputs_embeds is None:
        inputs_embeds = self.get_input_embeddings(input_ids=input_ids,
                                                  **kwargs)
        input_ids = None
    hidden_states = self.language_model.model(input_ids,
                                              positions,
                                              intermediate_tensors,
                                              inputs_embeds=inputs_embeds)
    return hidden_states

forward_images

forward_images(
    pixel_values_images: list[list[FloatTensor]],
    image_sizes_images: list[list[tuple[int, int]]],
    len_pixel_values_images: list[int],
) -> list[list[Tensor]]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward_images(
    self,
    pixel_values_images: list[list[torch.FloatTensor]],
    image_sizes_images: list[list[tuple[int, int]]],
    len_pixel_values_images: list[int],
) -> list[list[torch.Tensor]]:
    if sum(len_pixel_values_images) == 0:
        return None

    concat_pixel_values_images = torch.cat(list(
        chain(*pixel_values_images)),
                                           dim=0)

    visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
    image_forward_outs = self.vision_model(
        concat_pixel_values_images)[:, visual_token_idx:]

    image_forward_outs = image_forward_outs.to(
        dtype=self.mm_projector.dtype)
    image_forward_outs = self.mm_projector(image_forward_outs)  # b (h w) d

    split_sizes = [
        pixel_value.shape[0] for pixel_value in chain(*pixel_values_images)
    ]
    image_forward_outs = torch.split(image_forward_outs,
                                     split_sizes,
                                     dim=0)

    # newline for anyres postprocessing
    image_features = anyres_postprocessing(
        image_forward_outs=image_forward_outs,
        image_sizes=[
            image_size for image_sizes in image_sizes_images
            for image_size in image_sizes
        ],
        num_queries_vis_abstractor=self.config.
        num_queries_vis_abstractor_image,
        unpad=self.config.unpad,
        patch_size=self.vision_config.patch_size,
        grid_size=self.vision_config.image_size,
        image_newline=self.image_newline,
        possible_resolutions=self.config.possible_resolutions,
    )
    return image_features

forward_videos

forward_videos(
    pixel_values_videos: list[list[FloatTensor]],
    len_pixel_values_videos: list[int],
) -> list[Tensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward_videos(
    self,
    pixel_values_videos: list[list[torch.FloatTensor]],
    len_pixel_values_videos: list[int],
) -> list[torch.Tensor]:

    len_video_grids = sum(len_pixel_values_videos)
    if len_video_grids == 0:
        return None

    # Run Vision Model
    concat_pixel_values_videos = torch.cat(list(
        chain(*pixel_values_videos)),
                                           dim=0)

    visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
    video_forward_outs = self.vision_model(
        concat_pixel_values_videos)[:, visual_token_idx:]

    video_forward_outs = video_forward_outs.to(
        dtype=self.mm_projector.dtype)

    # Run MM-Projector
    # len(num_grids) == len(num_queries_vis_abstractors) + 1
    grid_idx = 0
    num_grids = [
        grid_idx
    ]  # e.g. [0, 9, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 56]
    num_queries_vis_abstractors = [
    ]  # e.g. [81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 81, 9]
    len_total_frames = video_forward_outs.shape[0]

    if self.config.first_last_frames_slow:
        # slowfast (first_last_frames_slow)
        assert len_total_frames != 0
        if len_total_frames <= 2:
            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_slow)
            grid_idx += len_total_frames
            num_grids.append(grid_idx)
        else:
            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_slow)
            grid_idx += 1
            num_grids.append(grid_idx)

            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_fast)
            grid_idx += len_total_frames - 2
            num_grids.append(grid_idx)

            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_slow)
            grid_idx += 1
            num_grids.append(grid_idx)
    else:
        # slowfast
        for pixel_values_frames in pixel_values_videos:
            for pixel_values_frame in pixel_values_frames:
                if len(pixel_values_frame) > 0:
                    num_queries_vis_abstractors.append(
                        self.config.num_queries_vis_abstractor_video_slow)
                    grid_idx += 1
                    num_grids.append(grid_idx)
                    num_queries_vis_abstractors.append(
                        self.config.num_queries_vis_abstractor_video_fast)
                    grid_idx = grid_idx + len(pixel_values_frame) - 1
                    num_grids.append(grid_idx)

    video_forward_outs = self.mm_projector(video_forward_outs,
                                           num_queries_vis_abstractors,
                                           num_grids)

    video_features = []  # what we want to return
    target_features = []
    target_group_size = 0
    group_counter = 0
    video_groups = [
        len(frame) for frames in pixel_values_videos for frame in frames
    ]  # for concat video features after projector

    for forward_out in video_forward_outs:
        target_group_size += len(forward_out)
        target_features.append(forward_out.flatten(0, 1))

        video_group_size = video_groups[group_counter]
        if video_group_size == target_group_size:
            video_features.append(torch.cat(target_features, dim=0))
            target_features = []
            group_counter += 1
            target_group_size = 0

        elif video_group_size < target_group_size:
            raise RuntimeError(
                f"{video_group_size=} < {target_group_size=}")

    assert len(target_features
               ) == 0, f"target_features is not empty!! {target_features}"
    assert len(video_groups) == len(video_features)

    return video_features

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: Optional[
        MultiModalEmbeddings
    ] = None,
    **kwargs,
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    **kwargs,
) -> torch.Tensor:
    inputs_embeds = self.language_model.get_input_embeddings(input_ids)
    if (kwargs.get("pixel_values_images") is not None
            or kwargs.get("pixel_values_videos")
            is not None):  # v0 compatibility
        multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
    if multimodal_embeddings is not None:
        multimodal_embeddings = torch.cat(multimodal_embeddings, dim=0)
        _mask_image = input_ids == self.config.image_token_id
        _mask_video = input_ids == self.config.video_token_id
        assert _mask_image.sum() + _mask_video.sum() == len(
            multimodal_embeddings)

        if multimodal_embeddings.dtype != inputs_embeds.dtype:
            multimodal_embeddings = multimodal_embeddings.to(
                dtype=inputs_embeds.dtype)
        if multimodal_embeddings.device != inputs_embeds.device:
            multimodal_embeddings = multimodal_embeddings.to(
                device=inputs_embeds.device)

        if _mask_image.sum() > 0:
            inputs_embeds[
                _mask_image] = multimodal_embeddings[:sum(_mask_image)]
        if _mask_video.sum() > 0:
            inputs_embeds[_mask_video] = multimodal_embeddings[
                -sum(_mask_video):]
    return inputs_embeds

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: Unpack[HCXVisionMultimodalInputs],
) -> Optional[MultiModalEmbeddings]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_multimodal_embeddings(
    self,
    **kwargs: Unpack[HCXVisionMultimodalInputs],
) -> Optional[MultiModalEmbeddings]:

    multimodal_embeddings = list()
    if kwargs.get("pixel_values_images") is not None:
        for _pixel_values_images, _image_sizes_images in zip(
                kwargs["pixel_values_images"],
                kwargs["image_sizes_images"]):
            _pixel_values_images = _pixel_values_images.unsqueeze(dim=0)
            _image_sizes_images = _image_sizes_images.unsqueeze(dim=0)
            _len_pixel_values_images = [
                len(pixel_value) for pixel_value in _pixel_values_images
            ]
            if isinstance(_image_sizes_images, torch.Tensor):
                _image_sizes_images = _image_sizes_images.detach().cpu(
                ).tolist()
            _multimodal_embeddings_images = self.forward_images(
                pixel_values_images=_pixel_values_images,
                image_sizes_images=_image_sizes_images,
                len_pixel_values_images=_len_pixel_values_images,
            )
            _multimodal_embeddings_images = torch.cat(
                _multimodal_embeddings_images, dim=0)
            multimodal_embeddings.append(_multimodal_embeddings_images)

    if kwargs.get("pixel_values_videos") is not None:
        for _pixel_values_videos, _vision_query_lengths_videos in zip(
                kwargs["pixel_values_videos"],
                kwargs["vision_query_lengths_videos"]):
            _len_pixel_values_videos = [
                len(_vision_query_lengths)
                for _vision_query_lengths in _vision_query_lengths_videos
            ]
            _c, _w, _h = _pixel_values_videos.shape[-3:]
            _pixel_values_videos = _pixel_values_videos.reshape(
                sum(_len_pixel_values_videos), -1, _c, _w,
                _h).unsqueeze(dim=0)
            _multimodal_embeddings_videos = self.forward_videos(
                pixel_values_videos=_pixel_values_videos,
                len_pixel_values_videos=_len_pixel_values_videos,
            )
            _multimodal_embeddings_videos = torch.cat(
                _multimodal_embeddings_videos, dim=0)
            multimodal_embeddings.append(_multimodal_embeddings_videos)
    return multimodal_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/hyperclovax_vision.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("image"):
        return IMAGE_TOKEN
    if modality.startswith("video"):
        return VIDEO_TOKEN

    raise ValueError("Only image or video modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def load_weights(
    self,
    weights: Iterable[tuple[str, torch.Tensor]],
) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

HCXVisionMlp

Bases: Module

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionMlp(nn.Module):

    def __init__(
        self,
        mm_projector_type,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.mm_projector_type = mm_projector_type
        if self.mm_projector_type == "mlp":
            self.fc1 = nn.Linear(in_features, hidden_features)
            self.act = act_layer()
            self.fc2 = nn.Linear(hidden_features, out_features)
        elif self.mm_projector_type == "inverted_mlp":
            self.fc1 = nn.Linear(in_features, 2 * hidden_features)
            self.act = act_layer()
            self.fc2 = nn.Linear(2 * hidden_features, out_features)
        else:
            raise NotImplementedError("{} is not implemented".format(
                self.mm_projector_type))

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x

act instance-attribute

act = act_layer()

fc1 instance-attribute

fc1 = Linear(in_features, hidden_features)

fc2 instance-attribute

fc2 = Linear(hidden_features, out_features)

mm_projector_type instance-attribute

mm_projector_type = mm_projector_type

__init__

__init__(
    mm_projector_type,
    in_features,
    hidden_features=None,
    out_features=None,
    act_layer=GELU,
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def __init__(
    self,
    mm_projector_type,
    in_features,
    hidden_features=None,
    out_features=None,
    act_layer=nn.GELU,
):
    super().__init__()
    out_features = out_features or in_features
    hidden_features = hidden_features or in_features
    self.mm_projector_type = mm_projector_type
    if self.mm_projector_type == "mlp":
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
    elif self.mm_projector_type == "inverted_mlp":
        self.fc1 = nn.Linear(in_features, 2 * hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(2 * hidden_features, out_features)
    else:
        raise NotImplementedError("{} is not implemented".format(
            self.mm_projector_type))

forward

forward(x)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward(self, x):
    x = self.fc1(x)
    x = self.act(x)
    x = self.fc2(x)
    return x

HCXVisionMultiModalProcessor

Bases: BaseMultiModalProcessor[HCXVisionProcessingInfo]

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionMultiModalProcessor(
        BaseMultiModalProcessor[HCXVisionProcessingInfo]):

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:

        def replace_multimodal_token(
            token_ids: torch.Tensor,
            target_token: int,
            repeats: list[int],
        ):
            output = list[int]()
            _repeats_idx = 0
            for token_id in token_ids:
                if token_id == target_token:
                    output += [token_id.item()] * repeats[_repeats_idx]
                    _repeats_idx += 1
                else:
                    output += [token_id.item()]

            return torch.tensor(output, device=token_ids.device)

        for video_idx, video_arr in enumerate(mm_data.get("videos", [])):
            if video_arr.dtype == np.uint8:
                continue
            mm_data["videos"][video_idx] = video_arr.astype(np.uint8)

        processed_outputs = self.info.ctx.call_hf_processor(
            hf_processor=self.info.get_hf_processor(**mm_kwargs),
            data=dict(
                text=prompt,
                images=None,
                videos=None,
            ),
        )  # text-only

        if len(mm_data) > 0:
            # batchify input as a single item
            images = mm_data.get("images", None)
            batched_images = None if images is None else [images]

            # list of video in single conversation
            videos = mm_data.get("videos", None)
            batched_videos = None if videos is None else [videos]

            _processed_outputs = self.info.ctx.call_hf_processor(
                hf_processor=self.info.get_hf_processor(**mm_kwargs),
                data=dict(
                    text=None,
                    images=batched_images,
                    videos=batched_videos,
                ),
            )  # mm-only

            for k, v in _processed_outputs.items():
                if isinstance(v, list) and len(v) > 0:
                    assert len(v) == 1
                    _processed_outputs[k] = v[0]

            if images:
                tokenizer = self.info.get_tokenizer()
                image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
                processed_outputs["input_ids"] = torch.stack([
                    replace_multimodal_token(
                        token_ids=_input_ids,
                        target_token=image_token_id,
                        repeats=_processed_outputs[
                            "vision_query_lengths_images"],
                    ) for _input_ids in processed_outputs["input_ids"]
                ],
                                                             dim=0)

            if videos:
                _num_per_videos = [
                    get_num_combined_frames(len(video)) for video in videos
                ]
                _processed_outputs["pixel_values_videos"] = [
                    _processed_outputs["pixel_values_videos"]
                    [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                    for _i in range(len(videos))
                ]
                _processed_outputs["vision_query_lengths_videos"] = [
                    _processed_outputs["vision_query_lengths_videos"]
                    [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                    for _i in range(len(videos))
                ]

                tokenizer = self.info.get_tokenizer()
                video_token_id = tokenizer.convert_tokens_to_ids(VIDEO_TOKEN)
                processed_outputs["input_ids"] = torch.stack([
                    replace_multimodal_token(
                        token_ids=_input_ids,
                        target_token=video_token_id,
                        repeats=[
                            sum(lens) for lens in
                            _processed_outputs["vision_query_lengths_videos"]
                        ],
                    ) for _input_ids in processed_outputs["input_ids"]
                ],
                                                             dim=0)

            processed_outputs.update(_processed_outputs)

        return processed_outputs

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        hf_config = self.info.get_hf_config()
        placeholder = {
            "image": hf_config.image_token_id,
            "video": hf_config.video_token_id,
        }

        def get_replacement_hyperclovax(
            item_idx: int,
            modality: str,
            out_mm_kwargs: MultiModalKwargsItems,
        ):
            out_item = out_mm_kwargs[modality][item_idx]

            if modality == "image":
                lens = out_item["vision_query_lengths_images"].data
                num_tokens = self.info.get_num_image_tokens(
                    vision_query_length=lens)
            elif modality == "video":
                lens = out_item["vision_query_lengths_videos"].data
                num_tokens = self.info.get_num_video_tokens(
                    vision_query_length=lens)
            else:
                raise NotImplementedError(modality)

            return [placeholder[modality]] * num_tokens

        return [
            PromptReplacement(
                modality=modality,
                target=[
                    placeholder[modality],
                ],
                replacement=partial(
                    get_replacement_hyperclovax,
                    modality=modality,
                    out_mm_kwargs=out_mm_kwargs,
                ),
            ) for modality in ("image", "video")
        ]

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            # image
            pixel_values_images=MultiModalFieldConfig.batched("image"),
            image_sizes_images=MultiModalFieldConfig.batched("image"),
            vision_query_lengths_images=MultiModalFieldConfig.batched("image"),
            num_queries_vis_abstractors_images=MultiModalFieldConfig.batched(
                "image"),
            num_queries_vis_abstractors_slow_images=MultiModalFieldConfig.
            batched("image"),
            first_last_frames_slows_images=MultiModalFieldConfig.batched(
                "image"),
            # video
            pixel_values_videos=MultiModalFieldConfig.batched("video"),
            image_sizes_videos=MultiModalFieldConfig.batched("video"),
            vision_query_lengths_videos=MultiModalFieldConfig.batched("video"),
            num_queries_vis_abstractors_videos=MultiModalFieldConfig.batched(
                "video"),
            num_queries_vis_abstractors_slow_videos=MultiModalFieldConfig.
            batched("video"),
            first_last_frames_slows_videos=MultiModalFieldConfig.batched(
                "video"),
        )

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:

    def replace_multimodal_token(
        token_ids: torch.Tensor,
        target_token: int,
        repeats: list[int],
    ):
        output = list[int]()
        _repeats_idx = 0
        for token_id in token_ids:
            if token_id == target_token:
                output += [token_id.item()] * repeats[_repeats_idx]
                _repeats_idx += 1
            else:
                output += [token_id.item()]

        return torch.tensor(output, device=token_ids.device)

    for video_idx, video_arr in enumerate(mm_data.get("videos", [])):
        if video_arr.dtype == np.uint8:
            continue
        mm_data["videos"][video_idx] = video_arr.astype(np.uint8)

    processed_outputs = self.info.ctx.call_hf_processor(
        hf_processor=self.info.get_hf_processor(**mm_kwargs),
        data=dict(
            text=prompt,
            images=None,
            videos=None,
        ),
    )  # text-only

    if len(mm_data) > 0:
        # batchify input as a single item
        images = mm_data.get("images", None)
        batched_images = None if images is None else [images]

        # list of video in single conversation
        videos = mm_data.get("videos", None)
        batched_videos = None if videos is None else [videos]

        _processed_outputs = self.info.ctx.call_hf_processor(
            hf_processor=self.info.get_hf_processor(**mm_kwargs),
            data=dict(
                text=None,
                images=batched_images,
                videos=batched_videos,
            ),
        )  # mm-only

        for k, v in _processed_outputs.items():
            if isinstance(v, list) and len(v) > 0:
                assert len(v) == 1
                _processed_outputs[k] = v[0]

        if images:
            tokenizer = self.info.get_tokenizer()
            image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
            processed_outputs["input_ids"] = torch.stack([
                replace_multimodal_token(
                    token_ids=_input_ids,
                    target_token=image_token_id,
                    repeats=_processed_outputs[
                        "vision_query_lengths_images"],
                ) for _input_ids in processed_outputs["input_ids"]
            ],
                                                         dim=0)

        if videos:
            _num_per_videos = [
                get_num_combined_frames(len(video)) for video in videos
            ]
            _processed_outputs["pixel_values_videos"] = [
                _processed_outputs["pixel_values_videos"]
                [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                for _i in range(len(videos))
            ]
            _processed_outputs["vision_query_lengths_videos"] = [
                _processed_outputs["vision_query_lengths_videos"]
                [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                for _i in range(len(videos))
            ]

            tokenizer = self.info.get_tokenizer()
            video_token_id = tokenizer.convert_tokens_to_ids(VIDEO_TOKEN)
            processed_outputs["input_ids"] = torch.stack([
                replace_multimodal_token(
                    token_ids=_input_ids,
                    target_token=video_token_id,
                    repeats=[
                        sum(lens) for lens in
                        _processed_outputs["vision_query_lengths_videos"]
                    ],
                ) for _input_ids in processed_outputs["input_ids"]
            ],
                                                         dim=0)

        processed_outputs.update(_processed_outputs)

    return processed_outputs

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        # image
        pixel_values_images=MultiModalFieldConfig.batched("image"),
        image_sizes_images=MultiModalFieldConfig.batched("image"),
        vision_query_lengths_images=MultiModalFieldConfig.batched("image"),
        num_queries_vis_abstractors_images=MultiModalFieldConfig.batched(
            "image"),
        num_queries_vis_abstractors_slow_images=MultiModalFieldConfig.
        batched("image"),
        first_last_frames_slows_images=MultiModalFieldConfig.batched(
            "image"),
        # video
        pixel_values_videos=MultiModalFieldConfig.batched("video"),
        image_sizes_videos=MultiModalFieldConfig.batched("video"),
        vision_query_lengths_videos=MultiModalFieldConfig.batched("video"),
        num_queries_vis_abstractors_videos=MultiModalFieldConfig.batched(
            "video"),
        num_queries_vis_abstractors_slow_videos=MultiModalFieldConfig.
        batched("video"),
        first_last_frames_slows_videos=MultiModalFieldConfig.batched(
            "video"),
    )

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    placeholder = {
        "image": hf_config.image_token_id,
        "video": hf_config.video_token_id,
    }

    def get_replacement_hyperclovax(
        item_idx: int,
        modality: str,
        out_mm_kwargs: MultiModalKwargsItems,
    ):
        out_item = out_mm_kwargs[modality][item_idx]

        if modality == "image":
            lens = out_item["vision_query_lengths_images"].data
            num_tokens = self.info.get_num_image_tokens(
                vision_query_length=lens)
        elif modality == "video":
            lens = out_item["vision_query_lengths_videos"].data
            num_tokens = self.info.get_num_video_tokens(
                vision_query_length=lens)
        else:
            raise NotImplementedError(modality)

        return [placeholder[modality]] * num_tokens

    return [
        PromptReplacement(
            modality=modality,
            target=[
                placeholder[modality],
            ],
            replacement=partial(
                get_replacement_hyperclovax,
                modality=modality,
                out_mm_kwargs=out_mm_kwargs,
            ),
        ) for modality in ("image", "video")
    ]

HCXVisionMultimodalPixelInputs

Bases: TypedDict

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionMultimodalPixelInputs(TypedDict):
    type: Literal["pixel_values"]
    pixel_values_images: list[torch.Tensor]
    """
    Shape: `[(num_grids, num_channels, height, width), ...]` if anyres

    Note that `height` or `width` may be different per batch and image,
    in which case the data is passed as a list instead of a batched tensor.
    """
    image_sizes_images: list[tuple[Union[int, float]]]
    """
    Shape: `[(height, width), ...]`
    """
    vision_query_lengths_images: list[Union[int, float]]
    pixel_values_videos: list[tuple[Union[int, float]]]
    """
    Shape: `[(num_grids, num_channels, height, width), ...]` if anyres
    """
    vision_query_lengths_videos: list[Union[int, float]]

image_sizes_images instance-attribute

image_sizes_images: list[tuple[Union[int, float]]]

Shape: [(height, width), ...]

pixel_values_images instance-attribute

pixel_values_images: list[Tensor]

Shape: [(num_grids, num_channels, height, width), ...] if anyres

Note that height or width may be different per batch and image, in which case the data is passed as a list instead of a batched tensor.

pixel_values_videos instance-attribute

pixel_values_videos: list[tuple[Union[int, float]]]

Shape: [(num_grids, num_channels, height, width), ...] if anyres

type instance-attribute

type: Literal['pixel_values']

vision_query_lengths_images instance-attribute

vision_query_lengths_images: list[Union[int, float]]

vision_query_lengths_videos instance-attribute

vision_query_lengths_videos: list[Union[int, float]]

HCXVisionProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionProcessingInfo(BaseProcessingInfo):

    def get_vision_encoder_info(self):
        return get_vision_encoder_info(self.get_hf_config())

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        return {"image": None, "video": None}

    def get_num_image_tokens(
        self,
        *,
        vision_query_length: Union[int, list[int]],
    ) -> int:
        if isinstance(vision_query_length, int):
            return vision_query_length
        else:
            return sum(vision_query_length)

    def get_num_video_tokens(
        self,
        *,
        vision_query_length: Union[int, list[int]],
    ) -> int:
        if isinstance(vision_query_length, int):
            return vision_query_length
        else:
            return sum(vision_query_length)

    def get_image_size_with_most_features(self) -> ImageSize:
        vision_encoder_info = self.get_vision_encoder_info()
        width = height = vision_encoder_info.get_image_size()
        return ImageSize(width=width, height=height)

    def get_max_image_tokens(self) -> int:
        target_width, target_height = self.get_image_size_with_most_features()

        return self.get_num_image_tokens(
            image_width=target_width,
            image_height=target_height,
        )

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_image_size_with_most_features(self) -> ImageSize:
    vision_encoder_info = self.get_vision_encoder_info()
    width = height = vision_encoder_info.get_image_size()
    return ImageSize(width=width, height=height)

get_max_image_tokens

get_max_image_tokens() -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_max_image_tokens(self) -> int:
    target_width, target_height = self.get_image_size_with_most_features()

    return self.get_num_image_tokens(
        image_width=target_width,
        image_height=target_height,
    )

get_num_image_tokens

get_num_image_tokens(
    *, vision_query_length: Union[int, list[int]]
) -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_num_image_tokens(
    self,
    *,
    vision_query_length: Union[int, list[int]],
) -> int:
    if isinstance(vision_query_length, int):
        return vision_query_length
    else:
        return sum(vision_query_length)

get_num_video_tokens

get_num_video_tokens(
    *, vision_query_length: Union[int, list[int]]
) -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_num_video_tokens(
    self,
    *,
    vision_query_length: Union[int, list[int]],
) -> int:
    if isinstance(vision_query_length, int):
        return vision_query_length
    else:
        return sum(vision_query_length)

get_supported_mm_limits

get_supported_mm_limits() -> Mapping[str, Optional[int]]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"image": None, "video": None}

get_vision_encoder_info

get_vision_encoder_info()
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_vision_encoder_info(self):
    return get_vision_encoder_info(self.get_hf_config())

_build_hcxvision_hf_info

_build_hcxvision_hf_info(
    ctx: InputProcessingContext,
) -> HCXVisionProcessingInfo
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _build_hcxvision_hf_info(
    ctx: InputProcessingContext, ) -> HCXVisionProcessingInfo:
    return HCXVisionProcessingInfo(ctx)

_build_hcxvision_hf_processor

_build_hcxvision_hf_processor(
    info: HCXVisionProcessingInfo,
    dummy_inputs: BaseDummyInputsBuilder[
        HCXVisionProcessingInfo
    ],
    *,
    cache: Optional[ProcessingCache] = None,
) -> BaseMultiModalProcessor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _build_hcxvision_hf_processor(
    info: HCXVisionProcessingInfo,
    dummy_inputs: BaseDummyInputsBuilder[HCXVisionProcessingInfo],
    *,
    cache: Optional[ProcessingCache] = None,
) -> BaseMultiModalProcessor:
    if isinstance(info, HCXVisionProcessingInfo):
        return HCXVisionMultiModalProcessor(
            info,
            dummy_inputs,  # type: ignore
            cache=cache,
        )

    raise NotImplementedError(type(info))

anyres_postprocessing

anyres_postprocessing(
    image_forward_outs: list[FloatTensor],
    image_sizes: list[list[int]],
    possible_resolutions: list[tuple[int, int]],
    patch_size: int,
    grid_size: int,
    image_newline: FloatTensor,
    num_queries_vis_abstractor: int = -1,
    unpad: bool = False,
) -> list[FloatTensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def anyres_postprocessing(
    image_forward_outs: list[torch.FloatTensor],
    image_sizes: list[list[int]],
    possible_resolutions: list[tuple[int, int]],
    patch_size: int,
    grid_size: int,
    image_newline: torch.FloatTensor,
    num_queries_vis_abstractor: int = -1,
    unpad: bool = False,
) -> list[torch.FloatTensor]:
    height = width = grid_size // patch_size

    if num_queries_vis_abstractor > 0:
        assert (num_queries_vis_abstractor**0.5
                ).is_integer(), "n_queries must be square number"
        height = width = int(num_queries_vis_abstractor**0.5)

    # post-processing (unpad, add newline)
    new_image_features = []
    for image_idx, image_feature in enumerate(image_forward_outs):
        if image_feature.shape[0] > 1:
            image_feature = reshape_and_unpad_image_features(
                image_feature=image_feature,
                height=height,
                width=width,
                image_size=image_sizes[image_idx],
                possible_resolutions=possible_resolutions,
                grid_size=grid_size,  # Pass grid info if needed by helper
                unpad=unpad,
                image_newline=image_newline,
            )
        else:
            image_feature = image_feature[0]
            image_feature = torch.cat(
                (image_feature, image_newline[None].to(image_feature.device)),
                dim=0)
        new_image_features.append(image_feature)
    image_features = new_image_features
    return image_features

get_anyres_image_grid_shape

get_anyres_image_grid_shape(
    image_size: tuple[int, int],
    grid_pinpoints: Union[str, list[tuple[int, int]]],
    patch_size: int,
) -> tuple[int, int]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_anyres_image_grid_shape(
    image_size: tuple[int, int],
    grid_pinpoints: Union[str, list[tuple[int, int]]],
    patch_size: int,
) -> tuple[int, int]:
    possible_resolutions = grid_pinpoints if isinstance(
        grid_pinpoints, list) else ast.literal_eval(grid_pinpoints)

    original_width, original_height = image_size
    height, width = select_best_resolution((original_height, original_width),
                                           possible_resolutions)
    return width // patch_size, height // patch_size

get_num_combined_frames

get_num_combined_frames(
    num_frames: int,
    max_grid_shape: tuple[int, int] = (3, 3),
) -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_num_combined_frames(
        num_frames: int,
        max_grid_shape: tuple[int, int] = (3, 3),
) -> int:
    max_num_grids = max_grid_shape[0] * max_grid_shape[1]

    # Calculate the number of canvases needed.
    num_canvases = num_frames // max_num_grids
    leftover_frames = num_frames % max_num_grids

    return num_canvases + (leftover_frames > 0)

init_vision_tower_for_hcxvision

init_vision_tower_for_hcxvision(
    vision_config,
    quant_config: Optional[QuantizationConfig],
    *,
    use_nth_layer: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> Union[CLIPVisionModel, SiglipVisionModel]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def init_vision_tower_for_hcxvision(
    vision_config,
    quant_config: Optional[QuantizationConfig],
    *,
    use_nth_layer: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> Union[CLIPVisionModel, SiglipVisionModel]:
    num_hidden_layers = vision_config.num_hidden_layers
    if not isinstance(use_nth_layer, int):
        pass
    elif use_nth_layer >= 0:
        num_hidden_layers = use_nth_layer + 1
    else:
        num_hidden_layers = num_hidden_layers + use_nth_layer + 1

    if isinstance(vision_config, CLIPVisionConfig):
        return CLIPVisionModel(
            vision_config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers,
            require_post_norm=require_post_norm,
            prefix=prefix,
        )
    elif isinstance(vision_config, SiglipVisionConfig):
        return SiglipVisionModel(
            vision_config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers,
            require_post_norm=require_post_norm,
            prefix=prefix,
        )

    msg = f"Unsupported vision config: {type(vision_config)}"
    raise NotImplementedError(msg)

reshape_and_unpad_image_features

reshape_and_unpad_image_features(
    image_feature: Tensor,
    height: int,
    width: int,
    image_size: tuple[int, int],
    possible_resolutions: list[tuple[int, int]],
    grid_size: int,
    unpad: bool,
    image_newline: Tensor,
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def reshape_and_unpad_image_features(
    image_feature: torch.Tensor,
    height: int,
    width: int,
    image_size: tuple[int, int],
    possible_resolutions: list[tuple[int, int]],
    grid_size: int,
    unpad: bool,
    image_newline: torch.Tensor,
) -> torch.Tensor:
    base_image_feature = image_feature[0]
    image_feature = image_feature[1:]

    assert height * width == base_image_feature.shape[0], (
        f"{height=} * {width=} != {base_image_feature.shape[0]=}")

    num_patch_width, num_patch_height = get_anyres_image_grid_shape(
        image_size, possible_resolutions, grid_size)
    image_feature = image_feature.view(num_patch_height, num_patch_width,
                                       height, width, -1)

    if unpad:
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_size)
        image_feature = torch.cat(
            (
                image_feature,
                image_newline[:, None, None].expand(
                    *image_feature.shape[:-1], 1).to(image_feature.device),
            ),
            dim=-1,
        )
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
    else:
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.flatten(0, 3)
    image_feature = torch.cat((base_image_feature, image_feature), dim=0)

    return image_feature

resize_image

resize_image(
    image: Union[ndarray, Image], max_side: int = 378
) -> ndarray
Source code in vllm/model_executor/models/hyperclovax_vision.py
def resize_image(
    image: Union[np.ndarray, PIL.Image.Image],
    max_side: int = 378,
) -> np.ndarray:
    image_arr = image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    width, height = image.size
    cur_max_size = max(width, height)
    if cur_max_size <= max_side:
        return image_arr

    scale = max_side / cur_max_size
    width = int(width * scale)
    height = int(height * scale)
    image = image.resize((width, height), Image.LANCZOS)
    image_arr = np.array(image)
    return image_arr

select_best_resolution

select_best_resolution(
    original_size: tuple, possible_resolutions: list
) -> tuple
Source code in vllm/model_executor/models/hyperclovax_vision.py
def select_best_resolution(original_size: tuple,
                           possible_resolutions: list) -> tuple:
    original_height, original_width = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for height, width in possible_resolutions:
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(
            original_height * scale)
        effective_resolution = min(downscaled_width * downscaled_height,
                                   original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (
                effective_resolution == max_effective_resolution
                and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (height, width)

    return best_fit

unpad_image

unpad_image(
    tensor: Tensor, original_size: tuple[int, int]
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def unpad_image(tensor: torch.Tensor,
                original_size: tuple[int, int]) -> torch.Tensor:
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding:current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding:current_width - padding]

    return unpadded_tensor