vllm.model_executor.models.idefics2_vision_model
PyTorch Idefics2 model.
Idefics2Encoder ¶
Bases: Module
Transformer encoder consisting of config.num_hidden_layers
self attention layers. Each layer is a [Idefics2EncoderLayer
].
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config | Idefics2Config | Idefics2Config | required |
Source code in vllm/model_executor/models/idefics2_vision_model.py
layers instance-attribute
¶
layers = ModuleList(
[
(
Idefics2EncoderLayer(
config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
use_data_parallel=use_data_parallel,
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config: Idefics2Config,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
use_data_parallel: bool = False,
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward ¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs_embeds | Tensor | Optionally, instead of passing | required |
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2EncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/idefics2_vision_model.py
mlp instance-attribute
¶
mlp = Idefics2VisionMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
use_data_parallel=use_data_parallel,
)
self_attn instance-attribute
¶
self_attn = Idefics2VisionAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
use_data_parallel=use_data_parallel,
)
__init__ ¶
__init__(
config: Idefics2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
use_data_parallel: bool = False,
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward ¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
hidden_states | `torch.FloatTensor` | Input to the layer of shape | required |
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionAttention ¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/idefics2_vision_model.py
out_proj instance-attribute
¶
out_proj = ReplicatedLinear(
embed_dim,
embed_dim,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
qkv_proj instance-attribute
¶
qkv_proj = ReplicatedLinear(
embed_dim,
3 * q_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__ ¶
__init__(
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
use_data_parallel: bool = False,
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward ¶
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionEmbeddings ¶
Bases: Module
This is a modified version of siglip.modelign_siglip.SiglipVisionEmbeddings
to enable images of variable resolution.
The modifications are adapted from Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution which allows treating images in their native aspect ratio and without the need to resize them to the same fixed size. In particular, we start from the original pre-trained SigLIP model(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
Source code in vllm/model_executor/models/idefics2_vision_model.py
patch_embedding instance-attribute
¶
patch_embedding = Conv2d(
in_channels=num_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size,
padding="valid",
)
__init__ ¶
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward ¶
forward(
pixel_values: FloatTensor,
patch_attention_mask: BoolTensor,
tgt_sizes: Optional[IntTensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionMLP ¶
Bases: Module
Source code in vllm/model_executor/models/idefics2_vision_model.py
fc1 instance-attribute
¶
fc1 = cls_fc1(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2 instance-attribute
¶
fc2 = cls_fc2(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
__init__ ¶
__init__(
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
use_data_parallel: bool = False,
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward ¶
Source code in vllm/model_executor/models/idefics2_vision_model.py
Idefics2VisionTransformer ¶
Bases: Module
Source code in vllm/model_executor/models/idefics2_vision_model.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
encoder instance-attribute
¶
encoder = Idefics2Encoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
use_data_parallel=use_data_parallel,
)
post_layernorm instance-attribute
¶
__init__ ¶
__init__(
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: bool = True,
prefix: str = "",
use_data_parallel: bool = False,
) -> None
Source code in vllm/model_executor/models/idefics2_vision_model.py
_consolidate_qkv_weights ¶
Source code in vllm/model_executor/models/idefics2_vision_model.py
forward ¶
forward(
pixel_values,
patch_attention_mask: Optional[BoolTensor] = None,
tgt_sizes: Optional[IntTensor] = None,
) -> Tensor