vllm.model_executor.models.intern_vit
InternMLP ¶
Bases: Module
Source code in vllm/model_executor/models/intern_vit.py
fc1 instance-attribute
¶
fc1 = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2 instance-attribute
¶
fc2 = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
forward ¶
InternParallelAttention ¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/intern_vit.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
k_norm instance-attribute
¶
k_norm = RMSNorm(
dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
num_heads_per_partition instance-attribute
¶
num_heads_per_partition = divide(
num_dummy_heads + num_heads, tp_size
)
proj instance-attribute
¶
proj = RowParallelLinear(
dummy_dim,
embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.proj",
)
q_norm instance-attribute
¶
q_norm = RMSNorm(
dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
qkv instance-attribute
¶
qkv = QKVParallelLinear(
embed_dim,
head_dim,
num_dummy_heads + num_heads,
bias=qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv",
)
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_dummy_heads: int = 0,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
_apply_qk_norm ¶
Source code in vllm/model_executor/models/intern_vit.py
forward ¶
Source code in vllm/model_executor/models/intern_vit.py
InternSdpaAttention ¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/intern_vit.py
k_norm instance-attribute
¶
k_norm = RMSNorm(
dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
q_norm instance-attribute
¶
q_norm = RMSNorm(
dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
__init__ ¶
__init__(
config: PretrainedConfig, *, num_dummy_heads: int = 0
) -> None
Source code in vllm/model_executor/models/intern_vit.py
forward ¶
Source code in vllm/model_executor/models/intern_vit.py
InternVisionEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/intern_vit.py
patch_embedding instance-attribute
¶
patch_embedding = Conv2d(
in_channels=3,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size,
)
position_embedding instance-attribute
¶
position_embedding = Parameter(
randn(1, num_positions, embed_dim)
)
__init__ ¶
Source code in vllm/model_executor/models/intern_vit.py
_get_pos_embed ¶
Source code in vllm/model_executor/models/intern_vit.py
_get_position_embedding ¶
Source code in vllm/model_executor/models/intern_vit.py
forward ¶
forward(pixel_values: FloatTensor) -> Tensor
Source code in vllm/model_executor/models/intern_vit.py
InternVisionEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/intern_vit.py
layers instance-attribute
¶
layers = ModuleList(
[
(
InternVisionEncoderLayer(
config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.layers.{layer_idx}",
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
)
Source code in vllm/model_executor/models/intern_vit.py
InternVisionEncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/intern_vit.py
attn instance-attribute
¶
attn = _init_attn(
config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.attn",
)
mlp instance-attribute
¶
mlp = InternMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_dummy_heads: int = 0,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
_init_attn ¶
_init_attn(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
*,
num_dummy_heads: int,
prefix: str = "",
)
Source code in vllm/model_executor/models/intern_vit.py
InternVisionModel ¶
Bases: Module
Source code in vllm/model_executor/models/intern_vit.py
encoder instance-attribute
¶
encoder = InternVisionEncoder(
config=config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.encoder",
)
packed_modules_mapping class-attribute
instance-attribute
¶
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/intern_vit.py
forward ¶
forward(
pixel_values: Optional[Tensor] = None,
pixel_embeds: Optional[Tensor] = None,
) -> FloatTensor
Source code in vllm/model_executor/models/intern_vit.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/intern_vit.py
InternVisionPatchModel ¶
Bases: Module
Source code in vllm/model_executor/models/intern_vit.py
__init__ ¶
forward ¶
forward(
pixel_values: Optional[Tensor] = None,
pixel_embeds: Optional[Tensor] = None,
) -> FloatTensor