vllm.model_executor.models.interns1_vit
InternS1VisionEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
image_size instance-attribute
¶
image_size = (
image_size
if isinstance(image_size, Iterable)
else (image_size, image_size)
)
position_embeddings instance-attribute
¶
position_embeddings = Parameter(
zeros(1, num_patches + 1, hidden_size)
)
__init__ ¶
Source code in vllm/model_executor/models/interns1_vit.py
forward ¶
Source code in vllm/model_executor/models/interns1_vit.py
interpolate_pos_encoding ¶
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing.
Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
Source code in vllm/model_executor/models/interns1_vit.py
InternS1VisionEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
layer instance-attribute
¶
layer = ModuleList(
[
(
InternS1VisionLayer(
config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.layer.{layer_idx}",
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
)
Source code in vllm/model_executor/models/interns1_vit.py
InternS1VisionLayer ¶
Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
attention instance-attribute
¶
attention = _init_attn(
config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.attention",
)
lambda_1 instance-attribute
¶
lambda_1 = Parameter(
init_values * ones(hidden_size), requires_grad=True
)
lambda_2 instance-attribute
¶
lambda_2 = Parameter(
init_values * ones(hidden_size), requires_grad=True
)
layernorm_after instance-attribute
¶
layernorm_after = NORM2FN[norm_type](
hidden_size, eps=layer_norm_eps
)
layernorm_before instance-attribute
¶
layernorm_before = NORM2FN[norm_type](
hidden_size, eps=layer_norm_eps
)
mlp instance-attribute
¶
mlp = InternS1VisionMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_dummy_heads: int = 0,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/interns1_vit.py
_init_attn ¶
_init_attn(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
*,
num_dummy_heads: int,
prefix: str = "",
)
InternS1VisionMLP ¶
Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
fc1 instance-attribute
¶
fc1 = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2 instance-attribute
¶
fc2 = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/interns1_vit.py
forward ¶
Source code in vllm/model_executor/models/interns1_vit.py
InternS1VisionModel ¶
Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
encoder instance-attribute
¶
encoder = InternS1VisionEncoder(
config=config,
num_hidden_layers_override=num_hidden_layers_override,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.encoder",
)
layernorm instance-attribute
¶
__init__ ¶
__init__(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/interns1_vit.py
forward ¶
forward(
pixel_values: Optional[Tensor] = None,
pixel_embeds: Optional[Tensor] = None,
) -> FloatTensor
Source code in vllm/model_executor/models/interns1_vit.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/interns1_vit.py
InternS1VisionPatchEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/interns1_vit.py
projection instance-attribute
¶
projection = Conv2d(
num_channels,
hidden_size,
kernel_size=patch_size,
stride=patch_size,
)
__init__ ¶
Source code in vllm/model_executor/models/interns1_vit.py
forward ¶
Source code in vllm/model_executor/models/interns1_vit.py
InternSdpaAttention ¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/interns1_vit.py
k_norm instance-attribute
¶
k_norm = RMSNorm(
dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
q_norm instance-attribute
¶
q_norm = RMSNorm(
dummy_dim, eps=layer_norm_eps, var_hidden_size=embed_dim
)
__init__ ¶
__init__(
config: PretrainedConfig, *, num_dummy_heads: int = 0
) -> None