Skip to content

vllm.model_executor.models.llava_next

LlavaNextImageInputs module-attribute

_I module-attribute

_I = TypeVar('_I', bound=LlavaNextProcessingInfo)

BaseLlavaNextMultiModalProcessor

Bases: BaseLlavaMultiModalProcessor[_I]

Source code in vllm/model_executor/models/llava_next.py
class BaseLlavaNextMultiModalProcessor(BaseLlavaMultiModalProcessor[_I]):

    # Copied from BaseMultiModalProcessor
    @abstractmethod
    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        raise NotImplementedError

_get_mm_fields_config abstractmethod

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/llava_next.py
@abstractmethod
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    raise NotImplementedError

LlavaNextForConditionalGeneration

Bases: Module, SupportsMultiModal, SupportsPP

Source code in vllm/model_executor/models/llava_next.py
@MULTIMODAL_REGISTRY.register_processor(LlavaNextMultiModalProcessor,
                                        info=LlavaNextProcessingInfo,
                                        dummy_inputs=LlavaDummyInputsBuilder)
class LlavaNextForConditionalGeneration(nn.Module, SupportsMultiModal,
                                        SupportsPP):

    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            # mapping for new names in checkpoint saved after transformers v4.52
            "model.language_model.": "language_model.model.",
            "model.vision_tower.": "vision_tower.",
            "model.multi_modal_projector.": "multi_modal_projector.",
            "model.image_newline": "image_newline",
            "lm_head.": "language_model.lm_head.",
        })

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return "<image>"

        raise ValueError("Only image modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config

        vision_feature_layer = config.vision_feature_layer
        # Determine the layer up to which we will initialize the vision tower
        if isinstance(vision_feature_layer, int):
            vision_hidden_size = config.vision_config.hidden_size
            self.feature_sample_layers = None
        # Used for multimodal granite models to control encoder outputs
        elif isinstance(vision_feature_layer, (list, tuple)):
            vision_hidden_size = config.vision_config.hidden_size * len(
                vision_feature_layer)
            self.feature_sample_layers = vision_feature_layer
        else:
            raise TypeError(
                f"vision_layer_feature type: {type(vision_feature_layer)}"
                " is not supported")

        self.config = config
        self.multimodal_config = multimodal_config

        # TODO: Optionally initializes this for supporting embeddings.
        self.vision_tower = init_vision_tower_for_llava(
            config,
            quant_config,
            require_post_norm=False,
            prefix=maybe_prefix(prefix, "vision_tower"))
        self.image_newline = nn.Parameter(
            torch.empty(config.text_config.hidden_size))
        self.multi_modal_projector = LlavaMultiModalProjector(
            vision_hidden_size=vision_hidden_size,
            text_hidden_size=config.text_config.hidden_size,
            projector_hidden_act=config.projector_hidden_act,
            multimodal_projector_bias=config.multimodal_projector_bias)

        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=config.text_config,
            prefix=maybe_prefix(prefix, "language_model"),
        )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors)

    def _parse_and_validate_image_input(
            self, **kwargs: object) -> Optional[LlavaNextImageInputs]:
        pixel_values = kwargs.pop("pixel_values", None)
        image_sizes = kwargs.pop("image_sizes", None)
        image_embeds = kwargs.pop("image_embeds", None)

        if pixel_values is None and image_embeds is None:
            return None

        if pixel_values is not None:
            if not isinstance(pixel_values, (torch.Tensor, list)):
                raise ValueError("Incorrect type of pixel values. "
                                 f"Got type: {type(pixel_values)}")

            if not isinstance(image_sizes, (torch.Tensor, list)):
                raise ValueError("Incorrect type of image sizes. "
                                 f"Got type: {type(image_sizes)}")

            expected_h = expected_w = self.config.vision_config.image_size
            return LlavaNextImagePixelInputs(
                type="pixel_values",
                pixel_values=flatten_bn(pixel_values),
                image_sizes=flatten_bn(image_sizes, concat=True),
                resolve_bindings={
                    "h": expected_h,
                    "w": expected_w,
                })

        if image_embeds is not None:
            if not isinstance(image_embeds, torch.Tensor):
                raise ValueError("Incorrect type of image embeds. "
                                 f"Got type: {type(image_embeds)}")

            return LlavaNextImageEmbeddingInputs(
                type="image_embeds",
                data=flatten_bn(image_embeds),
            )

        raise AssertionError("This line should be unreachable.")

    def _select_image_features(self, image_features: torch.Tensor, *,
                               strategy: str) -> torch.Tensor:
        # Copied from https://github.com/huggingface/transformers/blob/39c3c0a72af6fbda5614dde02ff236069bb79827/src/transformers/models/llava/modeling_llava.py#L421  # noqa
        if strategy == "default":
            return image_features[:, 1:]
        elif strategy == "full":
            return image_features

        raise ValueError(f"Unexpected select feature strategy: {strategy}")

    def _image_pixels_to_features(
        self,
        vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
        pixel_values: torch.Tensor,
    ) -> torch.Tensor:

        # NOTE: we skip the step to select the vision feature layer since
        # this is already done inside the vision tower
        image_features = vision_tower(
            pixel_values, feature_sample_layers=self.feature_sample_layers)

        return self._select_image_features(
            image_features,
            strategy=self.config.vision_feature_select_strategy,
        )

    # Based on: https://github.com/haotian-liu/LLaVA/blob/main/llava/model/llava_arch.py
    def _merge_image_patch_embeddings(self, image_size: torch.Tensor,
                                      patch_embeddings: torch.Tensor, *,
                                      strategy: str) -> torch.Tensor:
        if strategy == "flat":
            return patch_embeddings.flatten(0, 1)

        if strategy.startswith("spatial"):
            height = width = self.config.vision_config.image_size \
                // self.config.vision_config.patch_size

            base_patch_embeds = patch_embeddings[0]
            if height * width != base_patch_embeds.shape[0]:
                raise ValueError(
                    "The number of patches is not consistent with the "
                    "image size.")

            if patch_embeddings.shape[0] > 1:
                other_patch_embeds = patch_embeddings[1:]

                # Move to CPU to avoid floating-point errors
                orig_height, orig_width = image_size.tolist()

                # image_aspect_ratio == "anyres"
                num_patch_height, num_patch_width = get_anyres_image_grid_shape(
                    (orig_height, orig_width),
                    self.config.image_grid_pinpoints,
                    self.config.vision_config.image_size,
                )
                num_patches = num_patch_height * num_patch_width

                # Image patches might be padded for batch processing
                other_patch_embeds = other_patch_embeds[:num_patches] \
                    .view(num_patch_height, num_patch_width, height, width, -1)

                if "unpad" in strategy:
                    other_patch_embeds = other_patch_embeds \
                        .permute(4, 0, 2, 1, 3).contiguous() \
                        .flatten(1, 2).flatten(2, 3)
                    other_patch_embeds = unpad_image(other_patch_embeds,
                                                     (orig_height, orig_width))
                    other_patch_embeds = torch.cat((
                        other_patch_embeds,
                        self.image_newline[:, None, None] \
                            .expand(*other_patch_embeds.shape[:-1], 1) \
                            .to(other_patch_embeds.device),
                    ), dim=-1)
                    other_patch_embeds = other_patch_embeds \
                        .flatten(1, 2).transpose(0, 1)
                else:
                    other_patch_embeds = other_patch_embeds \
                        .permute(0, 2, 1, 3, 4).contiguous() \
                        .flatten(0, 3)

                merged_patch_embeddings = torch.cat(
                    (base_patch_embeds, other_patch_embeds), dim=0)
            else:
                if "unpad" in strategy:
                    merged_patch_embeddings = torch.cat(
                        (base_patch_embeds,
                         self.image_newline[None] \
                            .to(base_patch_embeds.device)
                    ), dim=0)
                else:
                    merged_patch_embeddings = base_patch_embeds

            return merged_patch_embeddings

        raise ValueError(f"Unexpected patch merge strategy: {strategy}")

    def _process_image_pixels(
        self,
        inputs: LlavaNextImagePixelInputs,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
        assert self.vision_tower is not None

        pixel_values = inputs["pixel_values"]

        if isinstance(pixel_values, torch.Tensor):
            b, num_patches, c, h, w = pixel_values.shape
            stacked_pixel_values = pixel_values.view(b * num_patches, c, h, w)
            stacked_image_features = self._image_pixels_to_features(
                self.vision_tower, stacked_pixel_values)
            stacked_patch_embeddings = self.multi_modal_projector(
                stacked_image_features)

            return stacked_patch_embeddings.view(
                b, num_patches, *stacked_patch_embeddings.shape[1:])

        num_patches_per_batch = [v.shape[0] for v in pixel_values]
        stacked_pixel_values = torch.cat(pixel_values)
        stacked_image_features = self._image_pixels_to_features(
            self.vision_tower, stacked_pixel_values)

        return torch.split(self.multi_modal_projector(stacked_image_features),
                           num_patches_per_batch)

    def _process_image_input(
        self,
        image_input: LlavaNextImageInputs,
    ) -> Union[torch.Tensor, list[torch.Tensor]]:
        if image_input["type"] == "image_embeds":
            return [image_input["data"]]

        patch_embeddings = self._process_image_pixels(image_input)

        image_sizes = image_input.get("image_sizes")
        if image_sizes is None:
            batch_size = len(image_input["data"])
            vision_config = self.config.vision_config
            default_height = default_width = vision_config.image_size
            image_sizes = torch.as_tensor([[default_height, default_width]
                                           for _ in range(batch_size)])

        return [
            self._merge_image_patch_embeddings(image_sizes[i],
                                               patch_features_batch,
                                               strategy="spatial_unpad")
            for i, patch_features_batch in enumerate(patch_embeddings)
        ]

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(self,
                                  **kwargs: object) -> MultiModalEmbeddings:
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return []
        vision_embeddings = self._process_image_input(image_input)
        return vision_embeddings

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:

        if multimodal_embeddings is None \
            or len(multimodal_embeddings) == 0:
            return self.language_model.get_input_embeddings(input_ids)

        inputs_embeds = embed_multimodal(
            input_ids,
            self.config.image_token_index,
            self.language_model.model.get_input_embeddings,
            multimodal_embeddings,
        )
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        """Run forward pass for LlaVA-NeXT.

        One key thing to understand is the `input_ids` already accounts for the
        positions of the to-be-inserted image embeddings.

        Concretely, consider a text prompt:
        `"A chat between a curious human and an artificial intelligence
        assistant. The assistant gives helpful, detailed, and polite answers to
        the human's questions.
        USER: <image>\\nWhat is shown in this image? ASSISTANT:"`.

        Tokenizer outputs:
        `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
        29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
        6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
        29871, 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799,
        9047, 13566, 29901]`.

        To reserve space in KV cache, we have to insert placeholder tokens
        before they are inputted to the model, so the input processor prepends
        additional image tokens (denoted as `32000`), resulting in:
        `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
        29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
        6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
        29871, 32000, ..., 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973,
        319, 1799, 9047, 13566, 29901]`.

        Unlike in LLaVA-1.5, the number of image tokens inputted to the language
        model depends on the original size of the input image. Including the
        original image token in the input, the required number of image tokens
        is given by [get_llava_next_image_feature_size][].

        This way, the `positions` and `attn_metadata` are consistent
        with the `input_ids`.

        Args:
            input_ids: Flattened (concatenated) input_ids corresponding to a
                batch.
            pixel_values: The pixels in each grid patch for each input image.
            image_sizes: The original `(height, width)` for each input image.

        Info:
            [LlavaNextImageInputs][]
        """
        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner, this
        # condition is for v0 compatibility.
        elif inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)
            inputs_embeds = self.get_input_embeddings(input_ids,
                                                      vision_embeddings)
            input_ids = None

        hidden_states = self.language_model.model(input_ids,
                                                  positions,
                                                  intermediate_tensors,
                                                  inputs_embeds=inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

config instance-attribute

config = config

feature_sample_layers instance-attribute

feature_sample_layers = None

hf_to_vllm_mapper class-attribute instance-attribute

hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={
        "model.language_model.": "language_model.model.",
        "model.vision_tower.": "vision_tower.",
        "model.multi_modal_projector.": "multi_modal_projector.",
        "model.image_newline": "image_newline",
        "lm_head.": "language_model.lm_head.",
    }
)

image_newline instance-attribute

image_newline = Parameter(empty(hidden_size))

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "language_model"),
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

multi_modal_projector instance-attribute

multi_modal_projector = LlavaMultiModalProjector(
    vision_hidden_size=vision_hidden_size,
    text_hidden_size=hidden_size,
    projector_hidden_act=projector_hidden_act,
    multimodal_projector_bias=multimodal_projector_bias,
)

multimodal_config instance-attribute

multimodal_config = multimodal_config

vision_tower instance-attribute

vision_tower = init_vision_tower_for_llava(
    config,
    quant_config,
    require_post_norm=False,
    prefix=maybe_prefix(prefix, "vision_tower"),
)

__init__

__init__(
    *, vllm_config: VllmConfig, prefix: str = ""
) -> None
Source code in vllm/model_executor/models/llava_next.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    multimodal_config = vllm_config.model_config.multimodal_config

    vision_feature_layer = config.vision_feature_layer
    # Determine the layer up to which we will initialize the vision tower
    if isinstance(vision_feature_layer, int):
        vision_hidden_size = config.vision_config.hidden_size
        self.feature_sample_layers = None
    # Used for multimodal granite models to control encoder outputs
    elif isinstance(vision_feature_layer, (list, tuple)):
        vision_hidden_size = config.vision_config.hidden_size * len(
            vision_feature_layer)
        self.feature_sample_layers = vision_feature_layer
    else:
        raise TypeError(
            f"vision_layer_feature type: {type(vision_feature_layer)}"
            " is not supported")

    self.config = config
    self.multimodal_config = multimodal_config

    # TODO: Optionally initializes this for supporting embeddings.
    self.vision_tower = init_vision_tower_for_llava(
        config,
        quant_config,
        require_post_norm=False,
        prefix=maybe_prefix(prefix, "vision_tower"))
    self.image_newline = nn.Parameter(
        torch.empty(config.text_config.hidden_size))
    self.multi_modal_projector = LlavaMultiModalProjector(
        vision_hidden_size=vision_hidden_size,
        text_hidden_size=config.text_config.hidden_size,
        projector_hidden_act=config.projector_hidden_act,
        multimodal_projector_bias=config.multimodal_projector_bias)

    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=config.text_config,
        prefix=maybe_prefix(prefix, "language_model"),
    )

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors)

_image_pixels_to_features

_image_pixels_to_features(
    vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
    pixel_values: Tensor,
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def _image_pixels_to_features(
    self,
    vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
    pixel_values: torch.Tensor,
) -> torch.Tensor:

    # NOTE: we skip the step to select the vision feature layer since
    # this is already done inside the vision tower
    image_features = vision_tower(
        pixel_values, feature_sample_layers=self.feature_sample_layers)

    return self._select_image_features(
        image_features,
        strategy=self.config.vision_feature_select_strategy,
    )

_merge_image_patch_embeddings

_merge_image_patch_embeddings(
    image_size: Tensor,
    patch_embeddings: Tensor,
    *,
    strategy: str,
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def _merge_image_patch_embeddings(self, image_size: torch.Tensor,
                                  patch_embeddings: torch.Tensor, *,
                                  strategy: str) -> torch.Tensor:
    if strategy == "flat":
        return patch_embeddings.flatten(0, 1)

    if strategy.startswith("spatial"):
        height = width = self.config.vision_config.image_size \
            // self.config.vision_config.patch_size

        base_patch_embeds = patch_embeddings[0]
        if height * width != base_patch_embeds.shape[0]:
            raise ValueError(
                "The number of patches is not consistent with the "
                "image size.")

        if patch_embeddings.shape[0] > 1:
            other_patch_embeds = patch_embeddings[1:]

            # Move to CPU to avoid floating-point errors
            orig_height, orig_width = image_size.tolist()

            # image_aspect_ratio == "anyres"
            num_patch_height, num_patch_width = get_anyres_image_grid_shape(
                (orig_height, orig_width),
                self.config.image_grid_pinpoints,
                self.config.vision_config.image_size,
            )
            num_patches = num_patch_height * num_patch_width

            # Image patches might be padded for batch processing
            other_patch_embeds = other_patch_embeds[:num_patches] \
                .view(num_patch_height, num_patch_width, height, width, -1)

            if "unpad" in strategy:
                other_patch_embeds = other_patch_embeds \
                    .permute(4, 0, 2, 1, 3).contiguous() \
                    .flatten(1, 2).flatten(2, 3)
                other_patch_embeds = unpad_image(other_patch_embeds,
                                                 (orig_height, orig_width))
                other_patch_embeds = torch.cat((
                    other_patch_embeds,
                    self.image_newline[:, None, None] \
                        .expand(*other_patch_embeds.shape[:-1], 1) \
                        .to(other_patch_embeds.device),
                ), dim=-1)
                other_patch_embeds = other_patch_embeds \
                    .flatten(1, 2).transpose(0, 1)
            else:
                other_patch_embeds = other_patch_embeds \
                    .permute(0, 2, 1, 3, 4).contiguous() \
                    .flatten(0, 3)

            merged_patch_embeddings = torch.cat(
                (base_patch_embeds, other_patch_embeds), dim=0)
        else:
            if "unpad" in strategy:
                merged_patch_embeddings = torch.cat(
                    (base_patch_embeds,
                     self.image_newline[None] \
                        .to(base_patch_embeds.device)
                ), dim=0)
            else:
                merged_patch_embeddings = base_patch_embeds

        return merged_patch_embeddings

    raise ValueError(f"Unexpected patch merge strategy: {strategy}")

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> Optional[LlavaNextImageInputs]
Source code in vllm/model_executor/models/llava_next.py
def _parse_and_validate_image_input(
        self, **kwargs: object) -> Optional[LlavaNextImageInputs]:
    pixel_values = kwargs.pop("pixel_values", None)
    image_sizes = kwargs.pop("image_sizes", None)
    image_embeds = kwargs.pop("image_embeds", None)

    if pixel_values is None and image_embeds is None:
        return None

    if pixel_values is not None:
        if not isinstance(pixel_values, (torch.Tensor, list)):
            raise ValueError("Incorrect type of pixel values. "
                             f"Got type: {type(pixel_values)}")

        if not isinstance(image_sizes, (torch.Tensor, list)):
            raise ValueError("Incorrect type of image sizes. "
                             f"Got type: {type(image_sizes)}")

        expected_h = expected_w = self.config.vision_config.image_size
        return LlavaNextImagePixelInputs(
            type="pixel_values",
            pixel_values=flatten_bn(pixel_values),
            image_sizes=flatten_bn(image_sizes, concat=True),
            resolve_bindings={
                "h": expected_h,
                "w": expected_w,
            })

    if image_embeds is not None:
        if not isinstance(image_embeds, torch.Tensor):
            raise ValueError("Incorrect type of image embeds. "
                             f"Got type: {type(image_embeds)}")

        return LlavaNextImageEmbeddingInputs(
            type="image_embeds",
            data=flatten_bn(image_embeds),
        )

    raise AssertionError("This line should be unreachable.")

_process_image_input

_process_image_input(
    image_input: LlavaNextImageInputs,
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/llava_next.py
def _process_image_input(
    self,
    image_input: LlavaNextImageInputs,
) -> Union[torch.Tensor, list[torch.Tensor]]:
    if image_input["type"] == "image_embeds":
        return [image_input["data"]]

    patch_embeddings = self._process_image_pixels(image_input)

    image_sizes = image_input.get("image_sizes")
    if image_sizes is None:
        batch_size = len(image_input["data"])
        vision_config = self.config.vision_config
        default_height = default_width = vision_config.image_size
        image_sizes = torch.as_tensor([[default_height, default_width]
                                       for _ in range(batch_size)])

    return [
        self._merge_image_patch_embeddings(image_sizes[i],
                                           patch_features_batch,
                                           strategy="spatial_unpad")
        for i, patch_features_batch in enumerate(patch_embeddings)
    ]

_process_image_pixels

_process_image_pixels(
    inputs: LlavaNextImagePixelInputs,
) -> Union[Tensor, tuple[Tensor, ...]]
Source code in vllm/model_executor/models/llava_next.py
def _process_image_pixels(
    self,
    inputs: LlavaNextImagePixelInputs,
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
    assert self.vision_tower is not None

    pixel_values = inputs["pixel_values"]

    if isinstance(pixel_values, torch.Tensor):
        b, num_patches, c, h, w = pixel_values.shape
        stacked_pixel_values = pixel_values.view(b * num_patches, c, h, w)
        stacked_image_features = self._image_pixels_to_features(
            self.vision_tower, stacked_pixel_values)
        stacked_patch_embeddings = self.multi_modal_projector(
            stacked_image_features)

        return stacked_patch_embeddings.view(
            b, num_patches, *stacked_patch_embeddings.shape[1:])

    num_patches_per_batch = [v.shape[0] for v in pixel_values]
    stacked_pixel_values = torch.cat(pixel_values)
    stacked_image_features = self._image_pixels_to_features(
        self.vision_tower, stacked_pixel_values)

    return torch.split(self.multi_modal_projector(stacked_image_features),
                       num_patches_per_batch)

_select_image_features

_select_image_features(
    image_features: Tensor, *, strategy: str
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def _select_image_features(self, image_features: torch.Tensor, *,
                           strategy: str) -> torch.Tensor:
    # Copied from https://github.com/huggingface/transformers/blob/39c3c0a72af6fbda5614dde02ff236069bb79827/src/transformers/models/llava/modeling_llava.py#L421  # noqa
    if strategy == "default":
        return image_features[:, 1:]
    elif strategy == "full":
        return image_features

    raise ValueError(f"Unexpected select feature strategy: {strategy}")

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/llava_next.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states,
                                              sampling_metadata)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Union[Tensor, IntermediateTensors]

Run forward pass for LlaVA-NeXT.

One key thing to understand is the input_ids already accounts for the positions of the to-be-inserted image embeddings.

Concretely, consider a text prompt: "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:".

Tokenizer outputs: [1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255, 29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568, 6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901, 29871, 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799, 9047, 13566, 29901].

To reserve space in KV cache, we have to insert placeholder tokens before they are inputted to the model, so the input processor prepends additional image tokens (denoted as 32000), resulting in: [1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255, 29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568, 6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901, 29871, 32000, ..., 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799, 9047, 13566, 29901].

Unlike in LLaVA-1.5, the number of image tokens inputted to the language model depends on the original size of the input image. Including the original image token in the input, the required number of image tokens is given by [get_llava_next_image_feature_size][].

This way, the positions and attn_metadata are consistent with the input_ids.

Parameters:

Name Type Description Default
input_ids Tensor

Flattened (concatenated) input_ids corresponding to a batch.

required
pixel_values

The pixels in each grid patch for each input image.

required
image_sizes

The original (height, width) for each input image.

required
Info

[LlavaNextImageInputs][]

Source code in vllm/model_executor/models/llava_next.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
    """Run forward pass for LlaVA-NeXT.

    One key thing to understand is the `input_ids` already accounts for the
    positions of the to-be-inserted image embeddings.

    Concretely, consider a text prompt:
    `"A chat between a curious human and an artificial intelligence
    assistant. The assistant gives helpful, detailed, and polite answers to
    the human's questions.
    USER: <image>\\nWhat is shown in this image? ASSISTANT:"`.

    Tokenizer outputs:
    `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
    29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
    6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
    29871, 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973, 319, 1799,
    9047, 13566, 29901]`.

    To reserve space in KV cache, we have to insert placeholder tokens
    before they are inputted to the model, so the input processor prepends
    additional image tokens (denoted as `32000`), resulting in:
    `[1, 319, 13563, 1546, 263, 12758, 5199, 322, 385, 23116, 21082, 20255,
    29889, 450, 20255, 4076, 8444, 29892, 13173, 29892, 322, 1248, 568,
    6089, 304, 278, 5199, 29915, 29879, 5155, 29889, 3148, 1001, 29901,
    29871, 32000, ..., 32000, 13, 5618, 338, 4318, 297, 445, 1967, 29973,
    319, 1799, 9047, 13566, 29901]`.

    Unlike in LLaVA-1.5, the number of image tokens inputted to the language
    model depends on the original size of the input image. Including the
    original image token in the input, the required number of image tokens
    is given by [get_llava_next_image_feature_size][].

    This way, the `positions` and `attn_metadata` are consistent
    with the `input_ids`.

    Args:
        input_ids: Flattened (concatenated) input_ids corresponding to a
            batch.
        pixel_values: The pixels in each grid patch for each input image.
        image_sizes: The original `(height, width)` for each input image.

    Info:
        [LlavaNextImageInputs][]
    """
    if intermediate_tensors is not None:
        inputs_embeds = None

    # NOTE: In v1, inputs_embeds is always generated at model runner, this
    # condition is for v0 compatibility.
    elif inputs_embeds is None:
        vision_embeddings = self.get_multimodal_embeddings(**kwargs)
        inputs_embeds = self.get_input_embeddings(input_ids,
                                                  vision_embeddings)
        input_ids = None

    hidden_states = self.language_model.model(input_ids,
                                              positions,
                                              intermediate_tensors,
                                              inputs_embeds=inputs_embeds)
    return hidden_states

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: Optional[
        MultiModalEmbeddings
    ] = None,
) -> Tensor
Source code in vllm/model_executor/models/llava_next.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:

    if multimodal_embeddings is None \
        or len(multimodal_embeddings) == 0:
        return self.language_model.get_input_embeddings(input_ids)

    inputs_embeds = embed_multimodal(
        input_ids,
        self.config.image_token_index,
        self.language_model.model.get_input_embeddings,
        multimodal_embeddings,
    )
    return inputs_embeds

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/llava_next.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/llava_next.py
def get_multimodal_embeddings(self,
                              **kwargs: object) -> MultiModalEmbeddings:
    image_input = self._parse_and_validate_image_input(**kwargs)
    if image_input is None:
        return []
    vision_embeddings = self._process_image_input(image_input)
    return vision_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/llava_next.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("image"):
        return "<image>"

    raise ValueError("Only image modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/llava_next.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

LlavaNextImageEmbeddingInputs

Bases: TensorSchema

Dimensions
  • bn: Batch size * number of images
  • ifs: Image feature size
  • hs: Hidden size (must match language model backbone)
Source code in vllm/model_executor/models/llava_next.py
class LlavaNextImageEmbeddingInputs(TensorSchema):
    """
    Dimensions:
        - bn: Batch size * number of images
        - ifs: Image feature size
        - hs: Hidden size (must match language model backbone)
    """
    type: Literal["image_embeds"] = "image_embeds"
    data: Annotated[torch.Tensor, TensorShape("bn", "ifs", "hs")]

data instance-attribute

data: Annotated[Tensor, TensorShape(bn, ifs, hs)]

type class-attribute instance-attribute

type: Literal['image_embeds'] = 'image_embeds'

LlavaNextImagePixelInputs

Bases: TensorSchema

Dimensions
  • bn: Batch size * number of images
  • np: Number of patches + 1
  • c: Number of channels (3)
  • h: Height
  • w: Width

Note that num_patches may be different per batch and image, in which case the data is passed as a list instead of a batched tensor.

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextImagePixelInputs(TensorSchema):
    """
    Dimensions:
        - bn: Batch size * number of images
        - np: Number of patches + 1
        - c: Number of channels (3)
        - h: Height
        - w: Width

    Note that `num_patches` may be different per batch and image,
    in which case the data is passed as a list instead of a batched tensor.
    """
    type: Literal["pixel_values"] = "pixel_values"
    pixel_values: Annotated[
        Union[torch.Tensor, list[torch.Tensor]],
        TensorShape("bn", "np", 3, "h", "w", dynamic_dims={"np"})]

    image_sizes: Annotated[Optional[torch.Tensor], TensorShape("bn", 2)]

image_sizes instance-attribute

image_sizes: Annotated[Optional[Tensor], TensorShape(bn, 2)]

pixel_values instance-attribute

pixel_values: Annotated[
    Union[Tensor, list[Tensor]],
    TensorShape(bn, np, 3, h, w, dynamic_dims={np}),
]

type class-attribute instance-attribute

type: Literal['pixel_values'] = 'pixel_values'

LlavaNextLikeConfig

Bases: LlavaLikeConfig, Protocol

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextLikeConfig(LlavaLikeConfig, Protocol):
    image_grid_pinpoints: Final[list[list[int]]]

image_grid_pinpoints instance-attribute

image_grid_pinpoints: Final[list[list[int]]]

LlavaNextMultiModalProcessor

Bases: BaseLlavaNextMultiModalProcessor[LlavaNextProcessingInfo]

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextMultiModalProcessor(
        BaseLlavaNextMultiModalProcessor[LlavaNextProcessingInfo]):

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            pixel_values=MultiModalFieldConfig.batched("image"),
            image_sizes=MultiModalFieldConfig.batched("image"),
            image_embeds=MultiModalFieldConfig.batched("image"),
        )

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/llava_next.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        pixel_values=MultiModalFieldConfig.batched("image"),
        image_sizes=MultiModalFieldConfig.batched("image"),
        image_embeds=MultiModalFieldConfig.batched("image"),
    )

LlavaNextProcessingInfo

Bases: BaseLlavaProcessingInfo

Source code in vllm/model_executor/models/llava_next.py
class LlavaNextProcessingInfo(BaseLlavaProcessingInfo):

    def get_hf_config(self) -> LlavaNextLikeConfig:
        return self.ctx.get_hf_config(LlavaNextConfig)

    def get_hf_processor(self, **kwargs: object):
        hf_processor = self.ctx.get_hf_processor(LlavaNextProcessor, **kwargs)

        # In case patch_size is omitted from `processor_config.json`
        # e.g. for E5-V: https://huggingface.co/royokong/e5-v
        if hf_processor.patch_size is None:
            patch_size = self.get_vision_encoder_info().get_patch_size()
            hf_processor.patch_size = patch_size

        return hf_processor

    # Based on: https://github.com/huggingface/text-generation-inference/blob/v3.0.1/server/text_generation_server/models/vlm_causal_lm.py#L113
    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
    ) -> int:
        hf_config = self.get_hf_config()
        vision_encoder_info = self.get_vision_encoder_info()

        base_feature_size = self._apply_feature_select_strategy(
            hf_config.vision_feature_select_strategy,
            vision_encoder_info.get_num_image_tokens(
                image_width=image_width,
                image_height=image_height,
            ),
        )

        num_patch_height, num_patch_width = get_anyres_image_grid_shape(
            image_size=(image_height, image_width),
            grid_pinpoints=hf_config.image_grid_pinpoints,
            patch_size=vision_encoder_info.get_image_size(),
        )

        (
            unpadded_feature_size,
            newline_feature_size,
        ) = self._get_num_unpadded_features(
            original_height=image_height,
            original_width=image_width,
            npatches=vision_encoder_info.get_patch_grid_length(),
            num_patch_height=num_patch_height,
            num_patch_width=num_patch_width,
        )

        return unpadded_feature_size + newline_feature_size + base_feature_size

    # Based on: https://github.com/huggingface/text-generation-inference/blob/v3.0.1/server/text_generation_server/models/vlm_causal_lm.py#L86
    def _get_num_unpadded_features(
        self,
        *,
        original_height: int,
        original_width: int,
        npatches: int,
        num_patch_height: int,
        num_patch_width: int,
    ) -> tuple[int, int]:
        current_height = npatches * num_patch_height
        current_width = npatches * num_patch_width

        aspect_ratio = original_width / original_height
        current_aspect_ratio = current_width / current_height

        if aspect_ratio > current_aspect_ratio:
            new_height = int(
                round(original_height * (current_width / original_width), 7))
            padding = (current_height - new_height) // 2
            current_height = current_height - (2 * padding)
        else:
            new_width = int(
                round(original_width * (current_height / original_height), 7))
            padding = (current_width - new_width) // 2
            current_width = current_width - (2 * padding)

        unpadded_features = current_height * current_width
        newline_features = current_height

        return (unpadded_features, newline_features)

    def get_image_size_with_most_features(self) -> ImageSize:
        hf_config = self.get_hf_config()

        largest_feature_size, largest_feature_pinpoint = 0, None
        for (height, width) in hf_config.image_grid_pinpoints:
            feat_size = self.get_num_image_tokens(image_width=width,
                                                  image_height=height)
            if feat_size > largest_feature_size:
                largest_feature_size = feat_size
                largest_feature_pinpoint = ImageSize(width=width,
                                                     height=height)

        if largest_feature_size == 0 or largest_feature_pinpoint is None:
            raise ValueError("Cannot have a largest feature size of 0!")

        return largest_feature_pinpoint

_get_num_unpadded_features

_get_num_unpadded_features(
    *,
    original_height: int,
    original_width: int,
    npatches: int,
    num_patch_height: int,
    num_patch_width: int,
) -> tuple[int, int]
Source code in vllm/model_executor/models/llava_next.py
def _get_num_unpadded_features(
    self,
    *,
    original_height: int,
    original_width: int,
    npatches: int,
    num_patch_height: int,
    num_patch_width: int,
) -> tuple[int, int]:
    current_height = npatches * num_patch_height
    current_width = npatches * num_patch_width

    aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if aspect_ratio > current_aspect_ratio:
        new_height = int(
            round(original_height * (current_width / original_width), 7))
        padding = (current_height - new_height) // 2
        current_height = current_height - (2 * padding)
    else:
        new_width = int(
            round(original_width * (current_height / original_height), 7))
        padding = (current_width - new_width) // 2
        current_width = current_width - (2 * padding)

    unpadded_features = current_height * current_width
    newline_features = current_height

    return (unpadded_features, newline_features)

get_hf_config

get_hf_config() -> LlavaNextLikeConfig
Source code in vllm/model_executor/models/llava_next.py
def get_hf_config(self) -> LlavaNextLikeConfig:
    return self.ctx.get_hf_config(LlavaNextConfig)

get_hf_processor

get_hf_processor(**kwargs: object)
Source code in vllm/model_executor/models/llava_next.py
def get_hf_processor(self, **kwargs: object):
    hf_processor = self.ctx.get_hf_processor(LlavaNextProcessor, **kwargs)

    # In case patch_size is omitted from `processor_config.json`
    # e.g. for E5-V: https://huggingface.co/royokong/e5-v
    if hf_processor.patch_size is None:
        patch_size = self.get_vision_encoder_info().get_patch_size()
        hf_processor.patch_size = patch_size

    return hf_processor

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/llava_next.py
def get_image_size_with_most_features(self) -> ImageSize:
    hf_config = self.get_hf_config()

    largest_feature_size, largest_feature_pinpoint = 0, None
    for (height, width) in hf_config.image_grid_pinpoints:
        feat_size = self.get_num_image_tokens(image_width=width,
                                              image_height=height)
        if feat_size > largest_feature_size:
            largest_feature_size = feat_size
            largest_feature_pinpoint = ImageSize(width=width,
                                                 height=height)

    if largest_feature_size == 0 or largest_feature_pinpoint is None:
        raise ValueError("Cannot have a largest feature size of 0!")

    return largest_feature_pinpoint

get_num_image_tokens

get_num_image_tokens(
    *, image_width: int, image_height: int
) -> int
Source code in vllm/model_executor/models/llava_next.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    hf_config = self.get_hf_config()
    vision_encoder_info = self.get_vision_encoder_info()

    base_feature_size = self._apply_feature_select_strategy(
        hf_config.vision_feature_select_strategy,
        vision_encoder_info.get_num_image_tokens(
            image_width=image_width,
            image_height=image_height,
        ),
    )

    num_patch_height, num_patch_width = get_anyres_image_grid_shape(
        image_size=(image_height, image_width),
        grid_pinpoints=hf_config.image_grid_pinpoints,
        patch_size=vision_encoder_info.get_image_size(),
    )

    (
        unpadded_feature_size,
        newline_feature_size,
    ) = self._get_num_unpadded_features(
        original_height=image_height,
        original_width=image_width,
        npatches=vision_encoder_info.get_patch_grid_length(),
        num_patch_height=num_patch_height,
        num_patch_width=num_patch_width,
    )

    return unpadded_feature_size + newline_feature_size + base_feature_size