vllm.model_executor.models.minicpmo
Inference-only MiniCPM-O model compatible with HuggingFace weights.
MiniCPMOAudioInputs module-attribute
¶
MiniCPMOAudioInputs = Union[
MiniCPMOAudioFeatureInputs, MiniCPMOAudioEmbeddingInputs
]
MiniCPMO ¶
Bases: MiniCPMV2_6
Source code in vllm/model_executor/models/minicpmo.py
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
|
apm instance-attribute
¶
apm = init_audio_module(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "apm"),
)
packed_modules_mapping class-attribute
instance-attribute
¶
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/minicpmo.py
_get_feat_extract_output_lengths ¶
Source code in vllm/model_executor/models/minicpmo.py
_maybe_ignore_quant_config ¶
_maybe_ignore_quant_config(
quant_config: QuantizationConfig,
)
Source code in vllm/model_executor/models/minicpmo.py
_parse_and_validate_audio_input ¶
_parse_and_validate_audio_input(
**kwargs: object,
) -> Optional[MiniCPMOAudioInputs]
Source code in vllm/model_executor/models/minicpmo.py
_parse_and_validate_multimodal_inputs ¶
Source code in vllm/model_executor/models/minicpmo.py
_process_audio_input ¶
_process_audio_input(
audio_input: MiniCPMOAudioInputs,
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/minicpmo.py
_process_multimodal_inputs ¶
_process_multimodal_inputs(modalities: dict)
Source code in vllm/model_executor/models/minicpmo.py
get_audio_hidden_states ¶
get_audio_hidden_states(
data: MiniCPMOAudioFeatureInputs,
) -> list[Tensor]
Source code in vllm/model_executor/models/minicpmo.py
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
|
get_placeholder_str classmethod
¶
Source code in vllm/model_executor/models/minicpmo.py
init_audio_module ¶
init_audio_module(
*, vllm_config: VllmConfig, prefix: str = ""
)
Source code in vllm/model_executor/models/minicpmo.py
init_resampler ¶
init_resampler(
embed_dim: int,
vision_dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> Module
Source code in vllm/model_executor/models/minicpmo.py
init_vision_module ¶
init_vision_module(
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> Module
Source code in vllm/model_executor/models/minicpmo.py
load_weights ¶
subsequent_chunk_mask ¶
subsequent_chunk_mask(
size: int,
chunk_size: int,
num_left_chunks: int = -1,
device: device = CPU_DEVICE,
num_lookhead: int = 0,
) -> Tensor
Source code in vllm/model_executor/models/minicpmo.py
MiniCPMOAudioEmbeddingInputs ¶
Bases: TensorSchema
Dimensions
- bn: Batch size * number of audios
- s: Number of slices
- h: Hidden size (must match language model backbone)
Length of each slice may vary, so pass it as a list.
Source code in vllm/model_executor/models/minicpmo.py
MiniCPMOAudioEmbeddingItems ¶
Bases: DictEmbeddingItems
Source code in vllm/model_executor/models/minicpmo.py
MiniCPMOAudioFeatureInputs ¶
Bases: TensorSchema
Dimensions
- bns: Batch size * number of audios * number of slices
- bn: Batch size * number of audios
- c: Number of channels
- l: Length
- s: Number of slices
Source code in vllm/model_executor/models/minicpmo.py
audio_feature_lens instance-attribute
¶
This should be feature length of each audio slice, which equals to audio_features.shape[-1]
audio_features instance-attribute
¶
Slice here means chunk. Audio that is too long will be split into slices, which is the same as image. Padding is used therefore audio_features
is torch.Tensor
.
MiniCPMODummyInputsBuilder ¶
Bases: MiniCPMVDummyInputsBuilder[MiniCPMOProcessingInfo]
Source code in vllm/model_executor/models/minicpmo.py
get_dummy_mm_data ¶
get_dummy_mm_data(
seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/minicpmo.py
get_dummy_text ¶
MiniCPMOMultiModalDataParser ¶
Bases: MiniCPMVMultiModalDataParser
Source code in vllm/model_executor/models/minicpmo.py
MiniCPMOMultiModalProcessor ¶
Bases: MiniCPMVMultiModalProcessor[MiniCPMOProcessingInfo]
Source code in vllm/model_executor/models/minicpmo.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|
_get_data_parser ¶
_get_data_parser() -> MultiModalDataParser
_get_mm_fields_config ¶
_get_prompt_updates ¶
_get_prompt_updates(
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/minicpmo.py
get_audio_prompt_texts ¶
Source code in vllm/model_executor/models/minicpmo.py
process_audios ¶
process_audios(
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> Mapping[str, NestedTensors]
Source code in vllm/model_executor/models/minicpmo.py
MiniCPMOProcessingInfo ¶
Bases: MiniCPMVProcessingInfo
Source code in vllm/model_executor/models/minicpmo.py
get_audio_len_by_num_chunks ¶
Source code in vllm/model_executor/models/minicpmo.py
get_audio_placeholder ¶
Source code in vllm/model_executor/models/minicpmo.py
get_max_audio_tokens_per_chunk ¶
get_max_audio_tokens_per_chunk() -> int
Source code in vllm/model_executor/models/minicpmo.py
get_num_frames_with_most_features ¶
Source code in vllm/model_executor/models/minicpmo.py
MiniCPMWhisperEncoder ¶
Bases: WhisperEncoder
Source code in vllm/model_executor/models/minicpmo.py
layers instance-attribute
¶
layers = ModuleList(
[
(MiniCPMWhisperEncoderLayer(config, layer_idx=i))
for i in (range(encoder_layers))
]
)
__init__ ¶
forward ¶
forward(
input_features: Tensor,
attention_mask: Optional[Tensor] = None,
) -> BaseModelOutputWithPast
Source code in vllm/model_executor/models/minicpmo.py
MiniCPMWhisperEncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/minicpmo.py
self_attn instance-attribute
¶
self_attn = WhisperAttention(
embed_dim=embed_dim,
num_heads=encoder_attention_heads,
dropout=attention_dropout,
config=config,
layer_idx=layer_idx,
)
__init__ ¶
__init__(config: WhisperConfig, layer_idx: int)
Source code in vllm/model_executor/models/minicpmo.py
forward ¶
Source code in vllm/model_executor/models/minicpmo.py
MultiModalProjector ¶
Bases: Module