vllm.model_executor.models.mpt
MPTAttention ¶
Bases: Module
Source code in vllm/model_executor/models/mpt.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
Wqkv instance-attribute
¶
Wqkv = QKVParallelLinear(
d_model,
d_model // total_num_heads,
total_num_heads,
total_num_kv_heads,
bias=not no_bias,
quant_config=quant_config,
)
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
alibi_slopes=alibi_slopes,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
out_proj instance-attribute
¶
out_proj = RowParallelLinear(
d_model,
d_model,
bias=not no_bias,
quant_config=quant_config,
)
__init__ ¶
__init__(
config: MptConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/mpt.py
forward ¶
Source code in vllm/model_executor/models/mpt.py
MPTBlock ¶
Bases: Module
Source code in vllm/model_executor/models/mpt.py
attn instance-attribute
¶
attn = MPTAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attn",
)
__init__ ¶
__init__(
config: MptConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/mpt.py
forward ¶
Source code in vllm/model_executor/models/mpt.py
MPTForCausalLM ¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/mpt.py
make_empty_intermediate_tensors instance-attribute
¶
transformer instance-attribute
¶
transformer = MPTModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/mpt.py
compute_logits ¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/mpt.py
get_input_embeddings ¶
MPTMLP ¶
Bases: Module
Source code in vllm/model_executor/models/mpt.py
down_proj instance-attribute
¶
down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=not no_bias,
quant_config=quant_config,
)
up_proj instance-attribute
¶
up_proj = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=not no_bias,
quant_config=quant_config,
)
__init__ ¶
__init__(
config: MptConfig,
quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/mpt.py
MPTModel ¶
Bases: Module
Source code in vllm/model_executor/models/mpt.py
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], d_model
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/mpt.py
forward ¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]