vllm.model_executor.models.olmo
Inference-only OLMo model compatible with HuggingFace weights.
OlmoAttention ¶
Bases: Module
This is the attention block where the output is computed as Attention(LN(x))
in MLP(LN(x + Attention(LN(x))))
(plus another skip connection).
Source code in vllm/model_executor/models/olmo.py
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scale=scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
o_proj instance-attribute
¶
o_proj = RowParallelLinear(
hidden_size,
hidden_size,
bias=attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
bias=attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
rotary_emb instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
__init__ ¶
__init__(
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/olmo.py
forward ¶
Source code in vllm/model_executor/models/olmo.py
OlmoDecoderLayer ¶
Bases: Module
This is a typical transformer block where the output is computed as MLP(LN(x + Attention(LN(x))))
(plus another skip connection).
Source code in vllm/model_executor/models/olmo.py
input_layernorm instance-attribute
¶
input_layernorm = LayerNorm(
hidden_size, elementwise_affine=False, bias=False
)
post_attention_layernorm instance-attribute
¶
post_attention_layernorm = LayerNorm(
hidden_size, elementwise_affine=False, bias=False
)
self_attn instance-attribute
¶
self_attn = OlmoAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.self_attn",
)
__init__ ¶
__init__(
config: OlmoConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/olmo.py
forward ¶
forward(
positions: Tensor, hidden_states: Tensor
) -> tuple[Tensor, Optional[tuple[Tensor, Tensor]]]
Source code in vllm/model_executor/models/olmo.py
OlmoForCausalLM ¶
Bases: Module
, SupportsPP
, SupportsLoRA
Extremely barebones HF model wrapper.
Source code in vllm/model_executor/models/olmo.py
make_empty_intermediate_tensors instance-attribute
¶
model instance-attribute
¶
model = OlmoModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
packed_modules_mapping class-attribute
instance-attribute
¶
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo.py
compute_logits ¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/olmo.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/olmo.py
OlmoMLP ¶
Bases: Module
This is the MLP block where the output is computed as MLP(LN(x))
in MLP(LN(x + Attention(LN(x))))
(plus another skip connection).
Source code in vllm/model_executor/models/olmo.py
down_proj instance-attribute
¶
down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
gate_up_proj instance-attribute
¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
__init__ ¶
__init__(
config: OlmoConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/olmo.py
OlmoModel ¶
Bases: Module
Source code in vllm/model_executor/models/olmo.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
|
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], hidden_size
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/olmo.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
:param input_ids: A tensor of shape (batch_size, seq_len)
.