vllm.model_executor.models.opt
Inference-only OPT model compatible with HuggingFace weights.
OPTAttention ¶
Bases: Module
Source code in vllm/model_executor/models/opt.py
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scale=scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
out_proj instance-attribute
¶
out_proj = RowParallelLinear(
embed_dim,
embed_dim,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
embed_dim,
head_dim,
total_num_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__ ¶
__init__(
embed_dim: int,
num_heads: int,
bias: bool = True,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/opt.py
forward ¶
Source code in vllm/model_executor/models/opt.py
OPTDecoder ¶
Bases: Module
Source code in vllm/model_executor/models/opt.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
embed_positions instance-attribute
¶
embed_positions = OPTLearnedPositionalEmbedding(
max_position_embeddings, hidden_size
)
embed_tokens instance-attribute
¶
embed_tokens = VocabParallelEmbedding(
vocab_size, word_embed_proj_dim
)
final_layer_norm instance-attribute
¶
final_layer_norm = LayerNorm(
hidden_size,
elementwise_affine=layer_norm_elementwise_affine,
)
project_in instance-attribute
¶
project_in = ReplicatedLinear(
word_embed_proj_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.project_in",
)
project_out instance-attribute
¶
project_out = ReplicatedLinear(
hidden_size,
word_embed_proj_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.project_out",
)
__init__ ¶
__init__(
config: OPTConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/opt.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/opt.py
OPTDecoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/opt.py
fc1 instance-attribute
¶
fc1 = ColumnParallelLinear(
embed_dim,
ffn_dim,
bias=enable_bias,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2 instance-attribute
¶
fc2 = RowParallelLinear(
ffn_dim,
embed_dim,
bias=enable_bias,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
final_layer_norm instance-attribute
¶
final_layer_norm = LayerNorm(
embed_dim,
elementwise_affine=layer_norm_elementwise_affine,
)
self_attn instance-attribute
¶
self_attn = OPTAttention(
embed_dim=embed_dim,
num_heads=num_attention_heads,
bias=enable_bias,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self_attn_layer_norm instance-attribute
¶
self_attn_layer_norm = LayerNorm(
embed_dim,
elementwise_affine=layer_norm_elementwise_affine,
)
__init__ ¶
__init__(
config: OPTConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/opt.py
forward ¶
Source code in vllm/model_executor/models/opt.py
OPTForCausalLM ¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/opt.py
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={"decoder.": "model.decoder."}
)
make_empty_intermediate_tensors instance-attribute
¶
model instance-attribute
¶
model = OPTModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
packed_modules_mapping class-attribute
instance-attribute
¶
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/opt.py
compute_logits ¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/opt.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/opt.py
OPTLearnedPositionalEmbedding ¶
Bases: Embedding
Source code in vllm/model_executor/models/opt.py
__init__ ¶
Source code in vllm/model_executor/models/opt.py
OPTModel ¶
Bases: Module
Source code in vllm/model_executor/models/opt.py
decoder instance-attribute
¶
decoder = OPTDecoder(
config,
cache_config,
quant_config,
prefix=f"{prefix}.decoder",
)
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], hidden_size
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/opt.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]