Skip to content

vllm.model_executor.models.persimmon

Inference-only persimmon model compatible with HuggingFace weights.

PersimmonAttention

Bases: Module

Source code in vllm/model_executor/models/persimmon.py
class PersimmonAttention(nn.Module):

    def __init__(self,
                 config: PersimmonConfig,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()
        self.config = config
        tensor_parallel_world_size = get_tensor_model_parallel_world_size()

        self.hidden_size = config.hidden_size
        self.total_num_heads = config.num_attention_heads
        self.num_heads = self.total_num_heads // tensor_parallel_world_size
        self.head_dim = self.hidden_size // self.total_num_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.partial_rotary_factor = config.partial_rotary_factor
        self.is_causal = True

        assert (self.head_dim * self.total_num_heads) == self.hidden_size
        assert self.total_num_heads % tensor_parallel_world_size == 0

        self.query_key_value = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            self.total_num_heads,
            bias=True,
            quant_config=quant_config,
        )
        self.dense = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            self.hidden_size,
            bias=True,
            quant_config=quant_config,
        )
        self.is_qk_layernorm = config.qk_layernorm

        if self.is_qk_layernorm:
            self.q_layernorm = nn.LayerNorm(self.head_dim)
            self.k_layernorm = nn.LayerNorm(self.head_dim)

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=self.max_position_embeddings,
            base=self.rope_theta,
            partial_rotary_factor=self.partial_rotary_factor,
        )
        self.scaling = self.head_dim**-0.5
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              scale=self.scaling,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")

    def _split_heads(self, x: torch.Tensor) -> torch.Tensor:
        # [seq_length, hidden_size] -> [seq_length, num_heads, head_dim]
        seq_length = x.shape[0]
        return x.view(seq_length, self.num_heads, self.head_dim)

    def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
        # [seq_length, num_heads, head_dim] -> [seq_length, hidden_size]
        seq_length = x.shape[0]
        return x.view(seq_length, self.num_heads * self.head_dim)

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        # [seq_length, 3 x hidden_size]
        qkv, _ = self.query_key_value(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)

        if self.is_qk_layernorm:
            # [seq_length, num_heads, head_dim]
            q = self._split_heads(q)
            k = self._split_heads(k)

            q = self.q_layernorm(q)
            k = self.k_layernorm(k)

            q = self._merge_heads(q)
            k = self._merge_heads(k)

        q, k = self.rotary_emb(position_ids, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.dense(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scale=scaling,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

config instance-attribute

config = config

dense instance-attribute

dense = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=True,
    quant_config=quant_config,
)

head_dim instance-attribute

head_dim = hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

is_causal instance-attribute

is_causal = True

is_qk_layernorm instance-attribute

is_qk_layernorm = qk_layernorm

k_layernorm instance-attribute

k_layernorm = LayerNorm(head_dim)

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tensor_parallel_world_size

partial_rotary_factor instance-attribute

partial_rotary_factor = partial_rotary_factor

q_layernorm instance-attribute

q_layernorm = LayerNorm(head_dim)

query_key_value instance-attribute

query_key_value = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    bias=True,
    quant_config=quant_config,
)

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
    partial_rotary_factor=partial_rotary_factor,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_attention_heads

__init__

__init__(
    config: PersimmonConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/persimmon.py
def __init__(self,
             config: PersimmonConfig,
             cache_config: Optional[CacheConfig] = None,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = ""):
    super().__init__()
    self.config = config
    tensor_parallel_world_size = get_tensor_model_parallel_world_size()

    self.hidden_size = config.hidden_size
    self.total_num_heads = config.num_attention_heads
    self.num_heads = self.total_num_heads // tensor_parallel_world_size
    self.head_dim = self.hidden_size // self.total_num_heads
    self.max_position_embeddings = config.max_position_embeddings
    self.rope_theta = config.rope_theta
    self.partial_rotary_factor = config.partial_rotary_factor
    self.is_causal = True

    assert (self.head_dim * self.total_num_heads) == self.hidden_size
    assert self.total_num_heads % tensor_parallel_world_size == 0

    self.query_key_value = QKVParallelLinear(
        self.hidden_size,
        self.head_dim,
        self.total_num_heads,
        bias=True,
        quant_config=quant_config,
    )
    self.dense = RowParallelLinear(
        self.total_num_heads * self.head_dim,
        self.hidden_size,
        bias=True,
        quant_config=quant_config,
    )
    self.is_qk_layernorm = config.qk_layernorm

    if self.is_qk_layernorm:
        self.q_layernorm = nn.LayerNorm(self.head_dim)
        self.k_layernorm = nn.LayerNorm(self.head_dim)

    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=self.max_position_embeddings,
        base=self.rope_theta,
        partial_rotary_factor=self.partial_rotary_factor,
    )
    self.scaling = self.head_dim**-0.5
    self.attn = Attention(self.num_heads,
                          self.head_dim,
                          scale=self.scaling,
                          cache_config=cache_config,
                          quant_config=quant_config,
                          prefix=f"{prefix}.attn")

_merge_heads

_merge_heads(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/persimmon.py
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
    # [seq_length, num_heads, head_dim] -> [seq_length, hidden_size]
    seq_length = x.shape[0]
    return x.view(seq_length, self.num_heads * self.head_dim)

_split_heads

_split_heads(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/persimmon.py
def _split_heads(self, x: torch.Tensor) -> torch.Tensor:
    # [seq_length, hidden_size] -> [seq_length, num_heads, head_dim]
    seq_length = x.shape[0]
    return x.view(seq_length, self.num_heads, self.head_dim)

forward

forward(
    position_ids: Tensor, hidden_states: Tensor
) -> Tensor
Source code in vllm/model_executor/models/persimmon.py
def forward(
    self,
    position_ids: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    # [seq_length, 3 x hidden_size]
    qkv, _ = self.query_key_value(hidden_states)
    q, k, v = qkv.chunk(chunks=3, dim=-1)

    if self.is_qk_layernorm:
        # [seq_length, num_heads, head_dim]
        q = self._split_heads(q)
        k = self._split_heads(k)

        q = self.q_layernorm(q)
        k = self.k_layernorm(k)

        q = self._merge_heads(q)
        k = self._merge_heads(k)

    q, k = self.rotary_emb(position_ids, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.dense(attn_output)
    return output

PersimmonDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/persimmon.py
class PersimmonDecoderLayer(nn.Module):

    def __init__(self,
                 config: PersimmonConfig,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = PersimmonAttention(config=config,
                                            cache_config=cache_config,
                                            quant_config=quant_config,
                                            prefix=f"{prefix}.self_attn")
        self.mlp = PersimmonMLP(config, quant_config=quant_config)
        self.input_layernorm = nn.LayerNorm(config.hidden_size,
                                            eps=config.layer_norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
                                                     eps=config.layer_norm_eps)

    def forward(
        self,
        position_ids: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states = self.self_attn(
            position_ids=position_ids,
            hidden_states=hidden_states,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)

        hidden_states = hidden_states + residual

        outputs = hidden_states
        return outputs

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = LayerNorm(hidden_size, eps=layer_norm_eps)

mlp instance-attribute

mlp = PersimmonMLP(config, quant_config=quant_config)

post_attention_layernorm instance-attribute

post_attention_layernorm = LayerNorm(
    hidden_size, eps=layer_norm_eps
)

self_attn instance-attribute

self_attn = PersimmonAttention(
    config=config,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    config: PersimmonConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/persimmon.py
def __init__(self,
             config: PersimmonConfig,
             cache_config: Optional[CacheConfig] = None,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = ""):
    super().__init__()
    self.hidden_size = config.hidden_size
    self.self_attn = PersimmonAttention(config=config,
                                        cache_config=cache_config,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.self_attn")
    self.mlp = PersimmonMLP(config, quant_config=quant_config)
    self.input_layernorm = nn.LayerNorm(config.hidden_size,
                                        eps=config.layer_norm_eps)
    self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
                                                 eps=config.layer_norm_eps)

forward

forward(
    position_ids: Tensor, hidden_states: Tensor
) -> Tensor
Source code in vllm/model_executor/models/persimmon.py
def forward(
    self,
    position_ids: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    residual = hidden_states

    hidden_states = self.input_layernorm(hidden_states)

    # Self Attention
    hidden_states = self.self_attn(
        position_ids=position_ids,
        hidden_states=hidden_states,
    )
    hidden_states = residual + hidden_states

    # Fully Connected
    residual = hidden_states
    hidden_states = self.post_attention_layernorm(hidden_states)
    hidden_states = self.mlp(hidden_states)

    hidden_states = hidden_states + residual

    outputs = hidden_states
    return outputs

PersimmonForCausalLM

Bases: Module, SupportsPP

Source code in vllm/model_executor/models/persimmon.py
class PersimmonForCausalLM(nn.Module, SupportsPP):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        self.config = config
        self.vocab_size = config.vocab_size
        self.model = PersimmonModel(vllm_config=vllm_config,
                                    prefix=maybe_prefix(prefix, "model"))
        self.lm_head = ParallelLMHead(config.vocab_size,
                                      config.hidden_size,
                                      bias=False)
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ):
        hidden_states = self.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

config instance-attribute

config = config

lm_head instance-attribute

lm_head = ParallelLMHead(
    vocab_size, hidden_size, bias=False
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = PersimmonModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/persimmon.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    self.config = config
    self.vocab_size = config.vocab_size
    self.model = PersimmonModel(vllm_config=vllm_config,
                                prefix=maybe_prefix(prefix, "model"))
    self.lm_head = ParallelLMHead(config.vocab_size,
                                  config.hidden_size,
                                  bias=False)
    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/persimmon.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
)
Source code in vllm/model_executor/models/persimmon.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
):
    hidden_states = self.model(
        input_ids=input_ids,
        positions=positions,
        intermediate_tensors=intermediate_tensors,
        inputs_embeds=inputs_embeds,
    )
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/persimmon.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/persimmon.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

PersimmonMLP

Bases: Module

Source code in vllm/model_executor/models/persimmon.py
class PersimmonMLP(nn.Module):

    def __init__(self,
                 config: PersimmonConfig,
                 quant_config: Optional[QuantizationConfig] = None):
        super().__init__()
        self.dense_h_to_4h = ColumnParallelLinear(config.hidden_size,
                                                  config.intermediate_size,
                                                  quant_config=quant_config)
        self.dense_4h_to_h = RowParallelLinear(config.intermediate_size,
                                               config.hidden_size,
                                               quant_config=quant_config)
        self.act = get_act_fn(config.hidden_act)

    def forward(self, hidden_states) -> torch.Tensor:
        hidden_states, _ = self.dense_h_to_4h(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.dense_4h_to_h(hidden_states)
        return hidden_states

act instance-attribute

act = get_act_fn(hidden_act)

dense_4h_to_h instance-attribute

dense_4h_to_h = RowParallelLinear(
    intermediate_size,
    hidden_size,
    quant_config=quant_config,
)

dense_h_to_4h instance-attribute

dense_h_to_4h = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    quant_config=quant_config,
)

__init__

__init__(
    config: PersimmonConfig,
    quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/persimmon.py
def __init__(self,
             config: PersimmonConfig,
             quant_config: Optional[QuantizationConfig] = None):
    super().__init__()
    self.dense_h_to_4h = ColumnParallelLinear(config.hidden_size,
                                              config.intermediate_size,
                                              quant_config=quant_config)
    self.dense_4h_to_h = RowParallelLinear(config.intermediate_size,
                                           config.hidden_size,
                                           quant_config=quant_config)
    self.act = get_act_fn(config.hidden_act)

forward

forward(hidden_states) -> Tensor
Source code in vllm/model_executor/models/persimmon.py
def forward(self, hidden_states) -> torch.Tensor:
    hidden_states, _ = self.dense_h_to_4h(hidden_states)
    hidden_states = self.act(hidden_states)
    hidden_states, _ = self.dense_4h_to_h(hidden_states)
    return hidden_states

PersimmonModel

Bases: Module

Source code in vllm/model_executor/models/persimmon.py
@support_torch_compile
class PersimmonModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config

        self.vocab_size = config.vocab_size
        self.config = config
        self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
                                                   config.hidden_size)
        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: PersimmonDecoderLayer(
                config, cache_config, quant_config, prefix=prefix),
            prefix=f"{prefix}.layers")
        self.final_layernorm = nn.LayerNorm(config.hidden_size,
                                            eps=config.layer_norm_eps)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(["hidden_states"],
                                                    config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
        for layer in self.layers[self.start_layer:self.end_layer]:
            hidden_states = layer(positions, hidden_states)
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({"hidden_states": hidden_states})
        hidden_states = self.final_layernorm(hidden_states)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        params_dict = dict(self.named_parameters(remove_duplicate=False))
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]

            if "query_key_value" in name:
                # copy from vllm/model_executor/models/bloom.py
                # NOTE: Persimmon's fused QKV's output_dim has the shape of
                # (num_heads * 3 * head_size), while the
                # required shape is (3 * num_heads * head_size).
                # Thus, we need weight conversion.
                output_dim = getattr(param, "output_dim", None)
                num_heads = self.config.num_attention_heads
                if output_dim is not None:
                    loaded_weight_shape = loaded_weight.shape
                    loaded_weight = loaded_weight.view(
                        loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
                        loaded_weight_shape[output_dim + 1:])
                    loaded_weight = loaded_weight.transpose(
                        output_dim, output_dim + 1)
                    loaded_weight = loaded_weight.reshape(loaded_weight_shape)

            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size
)

final_layernorm instance-attribute

final_layernorm = LayerNorm(hidden_size, eps=layer_norm_eps)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], hidden_size
    )
)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/persimmon.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config

    self.vocab_size = config.vocab_size
    self.config = config
    self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
                                               config.hidden_size)
    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: PersimmonDecoderLayer(
            config, cache_config, quant_config, prefix=prefix),
        prefix=f"{prefix}.layers")
    self.final_layernorm = nn.LayerNorm(config.hidden_size,
                                        eps=config.layer_norm_eps)
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(["hidden_states"],
                                                config.hidden_size))

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/persimmon.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
    for layer in self.layers[self.start_layer:self.end_layer]:
        hidden_states = layer(positions, hidden_states)
    if not get_pp_group().is_last_rank:
        return IntermediateTensors({"hidden_states": hidden_states})
    hidden_states = self.final_layernorm(hidden_states)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/persimmon.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/persimmon.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    params_dict = dict(self.named_parameters(remove_duplicate=False))
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if is_pp_missing_parameter(name, self):
            continue
        param = params_dict[name]

        if "query_key_value" in name:
            # copy from vllm/model_executor/models/bloom.py
            # NOTE: Persimmon's fused QKV's output_dim has the shape of
            # (num_heads * 3 * head_size), while the
            # required shape is (3 * num_heads * head_size).
            # Thus, we need weight conversion.
            output_dim = getattr(param, "output_dim", None)
            num_heads = self.config.num_attention_heads
            if output_dim is not None:
                loaded_weight_shape = loaded_weight.shape
                loaded_weight = loaded_weight.view(
                    loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
                    loaded_weight_shape[output_dim + 1:])
                loaded_weight = loaded_weight.transpose(
                    output_dim, output_dim + 1)
                loaded_weight = loaded_weight.reshape(loaded_weight_shape)

        weight_loader = getattr(param, "weight_loader",
                                default_weight_loader)
        weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params