Skip to content

vllm.model_executor.models.phi4_multimodal

Phi4MMAudioInputs module-attribute

Phi4MMImageInput module-attribute

_AUDIO_MAX_SOUNDFILE_SIZE module-attribute

_AUDIO_MAX_SOUNDFILE_SIZE = 241000

_AUDIO_PLACEHOLDER_TOKEN_ID module-attribute

_AUDIO_PLACEHOLDER_TOKEN_ID = 200011

_IMAGE_PLACEHOLDER_TOKEN_ID module-attribute

_IMAGE_PLACEHOLDER_TOKEN_ID = 200010

Phi4MMAudioEmbedding

Bases: Module

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMAudioEmbedding(nn.Module):

    def __init__(self, config: Phi4MultimodalConfig):
        super().__init__()
        self.config = config
        self.layer_idx = config.audio_config.feature_layer

        self.encoder = Phi4MultimodalAudioModel(config.audio_config)

        audio_config = config.audio_config
        proj_input_size = (audio_config.hidden_size *
                           audio_config.downsample_rate)
        self.vision_speech_projection = Phi4MMProjector(
            proj_input_size, config.hidden_size)
        self.speech_projection = Phi4MMProjector(proj_input_size,
                                                 config.hidden_size)

    def get_projection(
        self,
        audio_projection_mode: Literal["speech", "vision"],
    ) -> Phi4MMProjector:
        if audio_projection_mode == "speech":
            return self.speech_projection
        elif audio_projection_mode == "vision":
            return self.vision_speech_projection

    def forward(
        self,
        audio_input_features: torch.FloatTensor,
        audio_embed_sizes=None,
        audio_attention_mask=None,
        audio_projection_mode="speech",
    ) -> torch.FloatTensor:

        audio_projection = self.get_projection(audio_projection_mode)

        target_device = audio_projection.up.bias.device
        target_dtype = audio_projection.up.bias.dtype

        audio_input_features = audio_input_features.to(device=target_device,
                                                       dtype=target_dtype)

        audio_encoder_hidden_states = self.encoder(audio_input_features,
                                                   audio_attention_mask)
        audio_embeds = audio_projection(audio_encoder_hidden_states)

        return audio_embeds.flatten(0, 1)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()

        for name, loaded_weight in weights:
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

encoder instance-attribute

encoder = Phi4MultimodalAudioModel(audio_config)

layer_idx instance-attribute

layer_idx = feature_layer

speech_projection instance-attribute

speech_projection = Phi4MMProjector(
    proj_input_size, hidden_size
)

vision_speech_projection instance-attribute

vision_speech_projection = Phi4MMProjector(
    proj_input_size, hidden_size
)

__init__

__init__(config: Phi4MultimodalConfig)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(self, config: Phi4MultimodalConfig):
    super().__init__()
    self.config = config
    self.layer_idx = config.audio_config.feature_layer

    self.encoder = Phi4MultimodalAudioModel(config.audio_config)

    audio_config = config.audio_config
    proj_input_size = (audio_config.hidden_size *
                       audio_config.downsample_rate)
    self.vision_speech_projection = Phi4MMProjector(
        proj_input_size, config.hidden_size)
    self.speech_projection = Phi4MMProjector(proj_input_size,
                                             config.hidden_size)

forward

forward(
    audio_input_features: FloatTensor,
    audio_embed_sizes=None,
    audio_attention_mask=None,
    audio_projection_mode="speech",
) -> FloatTensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(
    self,
    audio_input_features: torch.FloatTensor,
    audio_embed_sizes=None,
    audio_attention_mask=None,
    audio_projection_mode="speech",
) -> torch.FloatTensor:

    audio_projection = self.get_projection(audio_projection_mode)

    target_device = audio_projection.up.bias.device
    target_dtype = audio_projection.up.bias.dtype

    audio_input_features = audio_input_features.to(device=target_device,
                                                   dtype=target_dtype)

    audio_encoder_hidden_states = self.encoder(audio_input_features,
                                               audio_attention_mask)
    audio_embeds = audio_projection(audio_encoder_hidden_states)

    return audio_embeds.flatten(0, 1)

get_projection

get_projection(
    audio_projection_mode: Literal["speech", "vision"],
) -> Phi4MMProjector
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_projection(
    self,
    audio_projection_mode: Literal["speech", "vision"],
) -> Phi4MMProjector:
    if audio_projection_mode == "speech":
        return self.speech_projection
    elif audio_projection_mode == "vision":
        return self.vision_speech_projection

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/phi4_multimodal.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()

    for name, loaded_weight in weights:
        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

Phi4MMAudioEmbeddingInputs

Bases: TypedDict

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMAudioEmbeddingInputs(TypedDict):
    type: Literal["audio_embeds"]
    data: NestedTensors
    """Shape: `(batch_size, num_audios, audio_feature_size, hidden_size)"""

data instance-attribute

Shape: `(batch_size, num_audios, audio_feature_size, hidden_size)

type instance-attribute

type: Literal['audio_embeds']

Phi4MMAudioFeatureInputs

Bases: TypedDict

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMAudioFeatureInputs(TypedDict):
    type: Literal["audio_features"]
    data: Union[torch.Tensor, list[torch.Tensor]]
    """Shape: `(batch_size * num_audios, 80, M)"""

data instance-attribute

Shape: `(batch_size * num_audios, 80, M)

type instance-attribute

type: Literal['audio_features']

Phi4MMAudioMeanVarianceNormLayer

Bases: Module

Mean/variance normalization layer.

Will subtract mean and multiply input by inverted standard deviation. Typically used as a very first layer in a model.

Parameters:

Name Type Description Default
input_size

int layer input size.

required
Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMAudioMeanVarianceNormLayer(nn.Module):
    """Mean/variance normalization layer.

    Will subtract mean and multiply input by inverted standard deviation.
    Typically used as a very first layer in a model.

    Args:
        input_size: int
            layer input size.
    """

    def __init__(self, config: Phi4MultimodalAudioConfig):
        super().__init__()
        self.global_mean = nn.Parameter(torch.zeros(config.input_size))
        self.global_invstd = nn.Parameter(torch.ones(config.input_size))

    def forward(self, input_: torch.Tensor) -> torch.Tensor:
        """MeanVarianceNormLayer Forward

        Args:
            input_: torch.Tensor
                input tensor.
        """
        return (input_ - self.global_mean) * self.global_invstd

global_invstd instance-attribute

global_invstd = Parameter(ones(input_size))

global_mean instance-attribute

global_mean = Parameter(zeros(input_size))

__init__

__init__(config: Phi4MultimodalAudioConfig)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(self, config: Phi4MultimodalAudioConfig):
    super().__init__()
    self.global_mean = nn.Parameter(torch.zeros(config.input_size))
    self.global_invstd = nn.Parameter(torch.ones(config.input_size))

forward

forward(input_: Tensor) -> Tensor

MeanVarianceNormLayer Forward

Parameters:

Name Type Description Default
input_ Tensor

torch.Tensor input tensor.

required
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(self, input_: torch.Tensor) -> torch.Tensor:
    """MeanVarianceNormLayer Forward

    Args:
        input_: torch.Tensor
            input tensor.
    """
    return (input_ - self.global_mean) * self.global_invstd

Phi4MMDummyInputsBuilder

Bases: BaseDummyInputsBuilder[Phi4MMProcessingInfo]

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMDummyInputsBuilder(BaseDummyInputsBuilder[Phi4MMProcessingInfo]):

    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_audios = mm_counts.get("audio", 0)
        num_images = mm_counts.get("image", 0)

        tokenizer = self.info.get_tokenizer()
        image_tokens: str = tokenizer.image_token * num_images
        audio_tokens: str = tokenizer.audio_token * num_audios

        return image_tokens + audio_tokens

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_audios = mm_counts.get("audio", 0)
        num_images = mm_counts.get("image", 0)

        target_width, target_height = \
            self.info.get_image_size_with_most_features()

        mm_data = {
            "image":
            self._get_dummy_images(width=target_width,
                                   height=target_height,
                                   num_images=num_images),
            "audio":
            self._get_dummy_audios(length=_AUDIO_MAX_SOUNDFILE_SIZE,
                                   num_audios=num_audios),
        }

        return mm_data

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
    num_audios = mm_counts.get("audio", 0)
    num_images = mm_counts.get("image", 0)

    target_width, target_height = \
        self.info.get_image_size_with_most_features()

    mm_data = {
        "image":
        self._get_dummy_images(width=target_width,
                               height=target_height,
                               num_images=num_images),
        "audio":
        self._get_dummy_audios(length=_AUDIO_MAX_SOUNDFILE_SIZE,
                               num_audios=num_audios),
    }

    return mm_data

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
    num_audios = mm_counts.get("audio", 0)
    num_images = mm_counts.get("image", 0)

    tokenizer = self.info.get_tokenizer()
    image_tokens: str = tokenizer.image_token * num_images
    audio_tokens: str = tokenizer.audio_token * num_audios

    return image_tokens + audio_tokens

Phi4MMImageEmbedding

Bases: Module

Image embedding.

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMImageEmbedding(nn.Module):
    """Image embedding."""

    def __init__(self, config: Phi4MultimodalConfig):
        super().__init__()
        self.config = config
        self.layer_idx = config.vision_config.feature_layer
        self.crop_size = config.vision_config.crop_size
        self.image_dim_out = config.vision_config.hidden_size

        n_patches = (config.vision_config.image_size //
                     config.vision_config.patch_size)
        if n_patches % 2 != 0:
            self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
            n_patches += 1
        self.num_img_tokens = (n_patches // 2)**2

        num_hidden_layers = (config.vision_config.num_hidden_layers +
                             self.layer_idx +
                             1 if self.layer_idx < 0 else self.layer_idx + 1)
        self.img_processor = Idefics2VisionTransformer(
            config.vision_config,
            require_post_norm=False,
            num_hidden_layers_override=num_hidden_layers)
        self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
        self.img_projection = Phi4MMProjector(self.image_dim_out,
                                              config.hidden_size)
        self.global_img_feature_extensor = nn.Parameter(
            torch.zeros([1, 1, self.image_dim_out]))
        self.sub_img_feature_extensor = nn.Parameter(
            torch.zeros([1, 1, 1, self.image_dim_out]))

    def get_img_features(
        self,
        img_embeds: torch.FloatTensor,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        img_feature = self.img_processor(img_embeds,
                                         patch_attention_mask=attention_mask)

        patch_feature = img_feature
        # reshape to 2D tensor
        width = int(math.sqrt(patch_feature.size(1)))
        patch_feature = patch_feature.view(-1, width, width,
                                           patch_feature.size(-1))
        # convert to NCHW
        patch_feature = patch_feature.permute(0, 3, 1, 2)
        if getattr(self, "img_processor_padding", None) is not None:
            patch_feature = self.img_processor_padding(patch_feature)
        patch_feature = self.image_token_compression(patch_feature)
        # convert to NHWC
        patch_feature = patch_feature.permute(0, 2, 3, 1)
        patch_feature = patch_feature.view(
            -1,
            patch_feature.size(1) * patch_feature.size(2),
            patch_feature.size(-1))
        return patch_feature

    def forward(
        self,
        image_pixel_values: torch.FloatTensor,
        image_sizes: Optional[torch.Tensor] = None,
        image_attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        image_pixel_values = image_pixel_values.to(
            self.img_processor.embeddings.patch_embedding.weight.dtype)

        target_device = self.img_projection.up.bias.device
        target_dtype = self.img_projection.up.bias.dtype

        batch_size = image_pixel_values.shape[0]

        img_features = self.get_img_features(
            image_pixel_values.flatten(0, 1),
            attention_mask=image_attention_mask.flatten(0, 1).to(
                dtype=bool, device=target_device),
        )
        base_feat_size = int(np.sqrt(img_features.shape[1]))
        img_features = img_features.view(batch_size, -1, base_feat_size**2,
                                         self.image_dim_out)
        image_sizes = image_sizes.view(-1, 2)

        output_imgs = []
        for idx in range(batch_size):
            height, width = image_sizes[idx]
            height_ratio = height // self.crop_size
            width_ratio = width // self.crop_size
            area_ratio = height_ratio * width_ratio

            global_img = img_features[idx, :1]
            global_img = global_img.reshape(1, base_feat_size, base_feat_size,
                                            self.image_dim_out).contiguous()
            temporary_extensor = self.sub_img_feature_extensor.repeat(
                1, base_feat_size, 1, 1)
            global_img = torch.cat([global_img, temporary_extensor],
                                   dim=2).reshape(1, -1, self.image_dim_out)

            sub_img = img_features[idx, 1:]
            sub_img = sub_img[:area_ratio]
            sub_img = (sub_img.reshape(
                height_ratio, width_ratio, base_feat_size, base_feat_size,
                self.image_dim_out).transpose(1, 2).reshape(
                    1, height_ratio * base_feat_size,
                    width_ratio * base_feat_size,
                    self.image_dim_out).contiguous())

            if image_attention_mask is not None:
                reshaped_image_attention_mask = (
                    image_attention_mask[idx, 1:area_ratio + 1,
                                         0::2, 0::2].reshape(
                                             height_ratio, width_ratio,
                                             base_feat_size,
                                             base_feat_size).transpose(
                                                 1, 2).reshape(
                                                     1, height_ratio *
                                                     base_feat_size,
                                                     width_ratio *
                                                     base_feat_size))
                useful_height = int(
                    reshaped_image_attention_mask[0, :, 0].sum().item())
                useful_width = int(
                    reshaped_image_attention_mask[0, 0, :].sum().item())
                sub_img = sub_img[:, :useful_height, :useful_width]
                temporary_extensor = self.sub_img_feature_extensor.repeat(
                    1, useful_height, 1, 1)
            else:
                temporary_extensor = self.sub_img_feature_extensor.repeat(
                    1, height_ratio * base_feat_size, 1, 1)

            sub_img = torch.cat([sub_img, temporary_extensor],
                                dim=2).reshape(1, -1, self.image_dim_out)

            # Merge global and sub
            output_imgs.append(
                torch.cat(
                    [sub_img, self.global_img_feature_extensor, global_img],
                    dim=1))

        img_set_tensor = []
        for output_img in output_imgs:
            output_img = output_img.to(device=target_device,
                                       dtype=target_dtype)
            img_feature_proj = self.img_projection(output_img)
            img_set_tensor.append(img_feature_proj.flatten(0, 1))

        return img_set_tensor

config instance-attribute

config = config

crop_size instance-attribute

crop_size = crop_size

global_img_feature_extensor instance-attribute

global_img_feature_extensor = Parameter(
    zeros([1, 1, image_dim_out])
)

image_dim_out instance-attribute

image_dim_out = hidden_size

image_token_compression instance-attribute

image_token_compression = AvgPool2d(kernel_size=2, stride=2)

img_processor instance-attribute

img_processor = Idefics2VisionTransformer(
    vision_config,
    require_post_norm=False,
    num_hidden_layers_override=num_hidden_layers,
)

img_processor_padding instance-attribute

img_processor_padding = ReflectionPad2d((0, 1, 0, 1))

img_projection instance-attribute

img_projection = Phi4MMProjector(image_dim_out, hidden_size)

layer_idx instance-attribute

layer_idx = feature_layer

num_img_tokens instance-attribute

num_img_tokens = (n_patches // 2) ** 2

sub_img_feature_extensor instance-attribute

sub_img_feature_extensor = Parameter(
    zeros([1, 1, 1, image_dim_out])
)

__init__

__init__(config: Phi4MultimodalConfig)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(self, config: Phi4MultimodalConfig):
    super().__init__()
    self.config = config
    self.layer_idx = config.vision_config.feature_layer
    self.crop_size = config.vision_config.crop_size
    self.image_dim_out = config.vision_config.hidden_size

    n_patches = (config.vision_config.image_size //
                 config.vision_config.patch_size)
    if n_patches % 2 != 0:
        self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
        n_patches += 1
    self.num_img_tokens = (n_patches // 2)**2

    num_hidden_layers = (config.vision_config.num_hidden_layers +
                         self.layer_idx +
                         1 if self.layer_idx < 0 else self.layer_idx + 1)
    self.img_processor = Idefics2VisionTransformer(
        config.vision_config,
        require_post_norm=False,
        num_hidden_layers_override=num_hidden_layers)
    self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
    self.img_projection = Phi4MMProjector(self.image_dim_out,
                                          config.hidden_size)
    self.global_img_feature_extensor = nn.Parameter(
        torch.zeros([1, 1, self.image_dim_out]))
    self.sub_img_feature_extensor = nn.Parameter(
        torch.zeros([1, 1, 1, self.image_dim_out]))

forward

forward(
    image_pixel_values: FloatTensor,
    image_sizes: Optional[Tensor] = None,
    image_attention_mask: Optional[Tensor] = None,
) -> FloatTensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(
    self,
    image_pixel_values: torch.FloatTensor,
    image_sizes: Optional[torch.Tensor] = None,
    image_attention_mask: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
    image_pixel_values = image_pixel_values.to(
        self.img_processor.embeddings.patch_embedding.weight.dtype)

    target_device = self.img_projection.up.bias.device
    target_dtype = self.img_projection.up.bias.dtype

    batch_size = image_pixel_values.shape[0]

    img_features = self.get_img_features(
        image_pixel_values.flatten(0, 1),
        attention_mask=image_attention_mask.flatten(0, 1).to(
            dtype=bool, device=target_device),
    )
    base_feat_size = int(np.sqrt(img_features.shape[1]))
    img_features = img_features.view(batch_size, -1, base_feat_size**2,
                                     self.image_dim_out)
    image_sizes = image_sizes.view(-1, 2)

    output_imgs = []
    for idx in range(batch_size):
        height, width = image_sizes[idx]
        height_ratio = height // self.crop_size
        width_ratio = width // self.crop_size
        area_ratio = height_ratio * width_ratio

        global_img = img_features[idx, :1]
        global_img = global_img.reshape(1, base_feat_size, base_feat_size,
                                        self.image_dim_out).contiguous()
        temporary_extensor = self.sub_img_feature_extensor.repeat(
            1, base_feat_size, 1, 1)
        global_img = torch.cat([global_img, temporary_extensor],
                               dim=2).reshape(1, -1, self.image_dim_out)

        sub_img = img_features[idx, 1:]
        sub_img = sub_img[:area_ratio]
        sub_img = (sub_img.reshape(
            height_ratio, width_ratio, base_feat_size, base_feat_size,
            self.image_dim_out).transpose(1, 2).reshape(
                1, height_ratio * base_feat_size,
                width_ratio * base_feat_size,
                self.image_dim_out).contiguous())

        if image_attention_mask is not None:
            reshaped_image_attention_mask = (
                image_attention_mask[idx, 1:area_ratio + 1,
                                     0::2, 0::2].reshape(
                                         height_ratio, width_ratio,
                                         base_feat_size,
                                         base_feat_size).transpose(
                                             1, 2).reshape(
                                                 1, height_ratio *
                                                 base_feat_size,
                                                 width_ratio *
                                                 base_feat_size))
            useful_height = int(
                reshaped_image_attention_mask[0, :, 0].sum().item())
            useful_width = int(
                reshaped_image_attention_mask[0, 0, :].sum().item())
            sub_img = sub_img[:, :useful_height, :useful_width]
            temporary_extensor = self.sub_img_feature_extensor.repeat(
                1, useful_height, 1, 1)
        else:
            temporary_extensor = self.sub_img_feature_extensor.repeat(
                1, height_ratio * base_feat_size, 1, 1)

        sub_img = torch.cat([sub_img, temporary_extensor],
                            dim=2).reshape(1, -1, self.image_dim_out)

        # Merge global and sub
        output_imgs.append(
            torch.cat(
                [sub_img, self.global_img_feature_extensor, global_img],
                dim=1))

    img_set_tensor = []
    for output_img in output_imgs:
        output_img = output_img.to(device=target_device,
                                   dtype=target_dtype)
        img_feature_proj = self.img_projection(output_img)
        img_set_tensor.append(img_feature_proj.flatten(0, 1))

    return img_set_tensor

get_img_features

get_img_features(
    img_embeds: FloatTensor,
    attention_mask: Optional[Tensor] = None,
) -> FloatTensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_img_features(
    self,
    img_embeds: torch.FloatTensor,
    attention_mask: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
    img_feature = self.img_processor(img_embeds,
                                     patch_attention_mask=attention_mask)

    patch_feature = img_feature
    # reshape to 2D tensor
    width = int(math.sqrt(patch_feature.size(1)))
    patch_feature = patch_feature.view(-1, width, width,
                                       patch_feature.size(-1))
    # convert to NCHW
    patch_feature = patch_feature.permute(0, 3, 1, 2)
    if getattr(self, "img_processor_padding", None) is not None:
        patch_feature = self.img_processor_padding(patch_feature)
    patch_feature = self.image_token_compression(patch_feature)
    # convert to NHWC
    patch_feature = patch_feature.permute(0, 2, 3, 1)
    patch_feature = patch_feature.view(
        -1,
        patch_feature.size(1) * patch_feature.size(2),
        patch_feature.size(-1))
    return patch_feature

Phi4MMImageEmbeddingInputs

Bases: TypedDict

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMImageEmbeddingInputs(TypedDict):
    type: Literal["image_embeds"]
    data: Union[torch.Tensor, list[torch.Tensor]]
    """Shape: `(batch_size * num_images, image_feature_size, hidden_size)`

    `hidden_size` must match the hidden size of language model backbone.
    """

data instance-attribute

Shape: (batch_size * num_images, image_feature_size, hidden_size)

hidden_size must match the hidden size of language model backbone.

type instance-attribute

type: Literal['image_embeds']

Phi4MMImagePixelInputs

Bases: TypedDict

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMImagePixelInputs(TypedDict):
    type: Literal["pixel_values"]
    data: Union[torch.Tensor, list[torch.Tensor]]
    """
    Shape:
    `(batch_size * num_images, 1 + num_patches, num_channels, height, width)`

    Note that `num_patches` may be different per batch and image,
    in which case the data is passed as a list instead of a batched tensor.
    """

    image_sizes: torch.Tensor
    """
    Shape: `(batch_size * num_images, 2)`

    This should be in `(height, width)` format.
    """

    num_img_tokens: list[int]
    """Shape: `(batch_size * num_images)`"""

    image_attention_mask: torch.Tensor
    """Shape: `(batch_size * num_images, H_mask, W_mask)`"""

data instance-attribute

Shape: (batch_size * num_images, 1 + num_patches, num_channels, height, width)

Note that num_patches may be different per batch and image, in which case the data is passed as a list instead of a batched tensor.

image_attention_mask instance-attribute

image_attention_mask: Tensor

Shape: (batch_size * num_images, H_mask, W_mask)

image_sizes instance-attribute

image_sizes: Tensor

Shape: (batch_size * num_images, 2)

This should be in (height, width) format.

num_img_tokens instance-attribute

num_img_tokens: list[int]

Shape: (batch_size * num_images)

type instance-attribute

type: Literal['pixel_values']

Phi4MMMultiModalProcessor

Bases: BaseMultiModalProcessor[Phi4MMProcessingInfo]

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMMultiModalProcessor(BaseMultiModalProcessor[Phi4MMProcessingInfo]):

    def _get_data_parser(self) -> MultiModalDataParser:
        feature_extractor = self.info.get_feature_extractor()
        return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        if not mm_data:
            prompt_ids = self.info.get_tokenizer().encode(prompt)
            prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
            return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")

        audio_data = mm_data.pop("audios", [])
        if audio_data:
            mm_data['audio'] = audio_data

        processed_outputs = super()._call_hf_processor(prompt, mm_data,
                                                       mm_kwargs, tok_kwargs)

        if "image_pixel_values" in processed_outputs:
            num_img_tokens = [
                self.info.get_num_image_tokens(image_width=img_size[0],
                                               image_height=img_size[1])
                for img_size in processed_outputs["image_sizes"]
            ]
            processed_outputs["num_img_tokens"] = num_img_tokens

        if audio_data:
            audio_features = processed_outputs['audio_input_features']
            sr = self.info.get_feature_extractor(**mm_kwargs).sampling_rate
            feature_sizes = [
                self.info.get_audio_num_frames(len(audio), sr)
                for audio in audio_data
            ]
            processed_outputs['audio_input_features'] = [
                audio_features[idx, :size]
                for idx, size in enumerate(feature_sizes)
            ]

        return processed_outputs

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            image_pixel_values=MultiModalFieldConfig.batched("image"),
            image_attention_mask=MultiModalFieldConfig.batched("image"),
            image_sizes=MultiModalFieldConfig.batched("image"),
            num_img_tokens=MultiModalFieldConfig.batched("image"),
            audio_input_features=MultiModalFieldConfig.batched("audio"),
        )

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, Any],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        tokenizer = self.info.get_tokenizer()
        image_token_id: int = tokenizer.vocab[tokenizer.image_token]
        audio_token_id: int = tokenizer.vocab[tokenizer.audio_token]

        hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
        audio_processor = self.info.get_feature_extractor(
            **hf_processor_mm_kwargs)

        def get_image_replacement_phi4mm(item_idx: int):
            images = mm_items.get_items(
                "image", (ImageEmbeddingItems, ImageProcessorItems))

            if isinstance(images, ImageEmbeddingItems):
                num_image_tokens = images.get_feature_size(item_idx)
            else:
                image_size = images.get_image_size(item_idx)
                num_image_tokens = self.info.get_num_image_tokens(
                    image_width=image_size.width,
                    image_height=image_size.height,
                    processor=hf_processor,
                )

            return [image_token_id] * num_image_tokens

        def get_audio_replacement_phi4mm(item_idx: int):
            audios = mm_items.get_items("audio", AudioProcessorItems)
            # TODO(Isotr0py): support embedding inputs
            audio_len = audios.get_audio_length(item_idx)
            audio_frames = self.info.get_audio_num_frames(
                audio_len, audio_processor.sampling_rate)
            audio_embed_size = self.info._compute_audio_embed_size(
                audio_frames)

            return [audio_token_id] * audio_embed_size

        return [
            PromptReplacement(
                modality="audio",
                target=[audio_token_id],
                replacement=get_audio_replacement_phi4mm,
            ),
            PromptReplacement(
                modality="image",
                target=[image_token_id],
                replacement=get_image_replacement_phi4mm,
            ),
        ]

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/phi4_multimodal.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:
    if not mm_data:
        prompt_ids = self.info.get_tokenizer().encode(prompt)
        prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
        return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")

    audio_data = mm_data.pop("audios", [])
    if audio_data:
        mm_data['audio'] = audio_data

    processed_outputs = super()._call_hf_processor(prompt, mm_data,
                                                   mm_kwargs, tok_kwargs)

    if "image_pixel_values" in processed_outputs:
        num_img_tokens = [
            self.info.get_num_image_tokens(image_width=img_size[0],
                                           image_height=img_size[1])
            for img_size in processed_outputs["image_sizes"]
        ]
        processed_outputs["num_img_tokens"] = num_img_tokens

    if audio_data:
        audio_features = processed_outputs['audio_input_features']
        sr = self.info.get_feature_extractor(**mm_kwargs).sampling_rate
        feature_sizes = [
            self.info.get_audio_num_frames(len(audio), sr)
            for audio in audio_data
        ]
        processed_outputs['audio_input_features'] = [
            audio_features[idx, :size]
            for idx, size in enumerate(feature_sizes)
        ]

    return processed_outputs

_get_data_parser

_get_data_parser() -> MultiModalDataParser
Source code in vllm/model_executor/models/phi4_multimodal.py
def _get_data_parser(self) -> MultiModalDataParser:
    feature_extractor = self.info.get_feature_extractor()
    return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/phi4_multimodal.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        image_pixel_values=MultiModalFieldConfig.batched("image"),
        image_attention_mask=MultiModalFieldConfig.batched("image"),
        image_sizes=MultiModalFieldConfig.batched("image"),
        num_img_tokens=MultiModalFieldConfig.batched("image"),
        audio_input_features=MultiModalFieldConfig.batched("audio"),
    )

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, Any],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/phi4_multimodal.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, Any],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
    tokenizer = self.info.get_tokenizer()
    image_token_id: int = tokenizer.vocab[tokenizer.image_token]
    audio_token_id: int = tokenizer.vocab[tokenizer.audio_token]

    hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
    audio_processor = self.info.get_feature_extractor(
        **hf_processor_mm_kwargs)

    def get_image_replacement_phi4mm(item_idx: int):
        images = mm_items.get_items(
            "image", (ImageEmbeddingItems, ImageProcessorItems))

        if isinstance(images, ImageEmbeddingItems):
            num_image_tokens = images.get_feature_size(item_idx)
        else:
            image_size = images.get_image_size(item_idx)
            num_image_tokens = self.info.get_num_image_tokens(
                image_width=image_size.width,
                image_height=image_size.height,
                processor=hf_processor,
            )

        return [image_token_id] * num_image_tokens

    def get_audio_replacement_phi4mm(item_idx: int):
        audios = mm_items.get_items("audio", AudioProcessorItems)
        # TODO(Isotr0py): support embedding inputs
        audio_len = audios.get_audio_length(item_idx)
        audio_frames = self.info.get_audio_num_frames(
            audio_len, audio_processor.sampling_rate)
        audio_embed_size = self.info._compute_audio_embed_size(
            audio_frames)

        return [audio_token_id] * audio_embed_size

    return [
        PromptReplacement(
            modality="audio",
            target=[audio_token_id],
            replacement=get_audio_replacement_phi4mm,
        ),
        PromptReplacement(
            modality="image",
            target=[image_token_id],
            replacement=get_image_replacement_phi4mm,
        ),
    ]

Phi4MMProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMProcessingInfo(BaseProcessingInfo):

    def get_hf_config(self) -> Phi4MultimodalConfig:
        return self.ctx.get_hf_config(Phi4MultimodalConfig)

    def get_hf_processor(self, **kwargs: object) -> Phi4MMProcessor:
        return self.ctx.get_hf_processor(Phi4MMProcessor, **kwargs)

    def get_feature_extractor(
            self, **kwargs: object) -> Phi4MultimodalFeatureExtractor:
        return self.get_hf_processor(**kwargs).audio_processor

    def get_image_processor(
        self,
        processor: Optional[Phi4MMProcessor] = None,
    ) -> Phi4MultimodalImageProcessorFast:
        if processor is None:
            processor = self.get_hf_processor()
        return processor.image_processor

    def get_dynamic_hd(
        self,
        processor: Optional[Phi4MMProcessor] = None,
    ) -> int:
        return self.get_image_processor(processor).dynamic_hd

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        return {"audio": None, "image": None}

    def _find_target_aspect_ratio(
        self,
        orig_width: int,
        orig_height: int,
        image_size: int,
        max_num: int,
        min_num: int,
    ):
        w_crop_num = math.ceil(orig_width / float(image_size))
        h_crop_num = math.ceil(orig_height / float(image_size))
        if w_crop_num * h_crop_num > max_num:
            aspect_ratio = orig_width / orig_height

            # calculate the existing image aspect ratio
            target_ratios = set((i, j) for i in range(1, max_num + 1)
                                for j in range(1, max_num + 1)
                                if i * j <= max_num and i * j >= min_num)
            target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

            # find the closest aspect ratio to the target
            image_processor = self.get_image_processor()
            target_aspect_ratio = image_processor.find_closest_aspect_ratio(
                aspect_ratio,
                target_ratios,
                orig_width,
                orig_height,
            )

            # calculate the target width and height
            target_width = image_size * target_aspect_ratio[0]
            target_height = image_size * target_aspect_ratio[1]
        else:
            target_width = image_size * w_crop_num
            target_height = image_size * h_crop_num
            target_aspect_ratio = (w_crop_num, h_crop_num)
        return target_aspect_ratio, target_height, target_width

    def _compute_num_image_tokens(
        self,
        orig_width: int,
        orig_height: int,
        dynamic_hd_size: int,
        vit_image_size: int,
        vit_patch_size: int,
        token_compression_factor: int = 2,
    ):
        """
        compute the number of tokens an image is expected to take up considering
        the image encoder architecture and exclude output features containing 
        only padding pixels

        for siglip, vit_image_size=448, vit_patch_size=14, so output will be 
        32x32 feature map
        NOTE right now, Phi4MM uses hard-coded token_compression_factor=2
        """
        assert vit_image_size % vit_patch_size == 0, (
            "vit_image_size must be divisible by vit_patch_size")
        assert (vit_image_size // vit_patch_size %
                token_compression_factor == 0), (
                    "vit_image_size // vit_patch_size must be divisible by "
                    "token_compression_factor")

        target_aspect_ratio, target_height, target_width = (
            self._find_target_aspect_ratio(orig_width,
                                           orig_height,
                                           vit_image_size,
                                           dynamic_hd_size,
                                           min_num=1))
        assert target_aspect_ratio[0] * vit_image_size == target_width, (
            f"{target_aspect_ratio[0]} * {vit_image_size} != {target_width}")
        assert target_aspect_ratio[1] * vit_image_size == target_height, (
            f"{target_aspect_ratio[1]} * {vit_image_size} != {target_height}")
        assert (target_height % vit_image_size == 0
                and target_width % vit_image_size == 0)

        padding_height, padding_width = _get_padding_size(
            orig_width, orig_height, target_height, target_width)
        assert padding_width == 0 or padding_height == 0, \
            "padding_width or padding_height must be 0"

        target_feat_width = target_width // vit_patch_size
        target_feat_height = target_height // vit_patch_size
        if padding_width >= vit_patch_size:
            assert padding_height == 0, "padding_height not 0"
            non_pad_feat_width = target_feat_width - math.floor(
                padding_width / vit_patch_size)
            non_pad_feat_height = target_feat_height
        elif padding_height >= vit_patch_size:
            assert padding_width == 0, "padding_width not 0"
            non_pad_feat_height = target_feat_height - math.floor(
                padding_height / vit_patch_size)
            non_pad_feat_width = target_feat_width
        else:
            # small padding shorter than a vit patch
            non_pad_feat_width = target_feat_width
            non_pad_feat_height = target_feat_height

        feat_width = non_pad_feat_width // token_compression_factor
        feat_height = non_pad_feat_height // token_compression_factor
        # NOTE it's possible that the non-padding feature is not divisible
        if non_pad_feat_width % token_compression_factor != 0:
            feat_width += 1
        if non_pad_feat_height % token_compression_factor != 0:
            feat_height += 1
        num_hd_patch_tokens = feat_width * feat_height
        num_hd_newline_tokens = feat_height
        vit_feature_size = vit_image_size // vit_patch_size
        num_global_image_tokens = (vit_feature_size //
                                   token_compression_factor)**2
        num_sep_tokens = 1
        num_global_image_newline_tokens = \
            vit_feature_size // token_compression_factor

        return (num_global_image_tokens + num_sep_tokens +
                num_hd_patch_tokens + num_hd_newline_tokens +
                num_global_image_newline_tokens)

    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
        processor: Optional[Phi4MMProcessor] = None,
    ) -> int:
        hf_config = self.get_hf_config()
        vision_config = hf_config.vision_config
        vit_image_size = vision_config.image_size
        vit_patch_size = vision_config.patch_size

        dynamic_hd_size = self.get_dynamic_hd(processor=processor)

        # we use default `token_compression_factor=2`,
        # since it's not in HF vision config.
        image_num_tokens = self._compute_num_image_tokens(
            image_width,
            image_height,
            dynamic_hd_size=dynamic_hd_size,
            vit_image_size=vit_image_size,
            vit_patch_size=vit_patch_size,
        )

        return image_num_tokens

    def get_image_size_with_most_features(
        self,
        processor: Optional[Phi4MMProcessor] = None,
    ) -> ImageSize:
        vit_image_size = self.get_hf_config().vision_config.image_size

        max_side = vit_image_size * self.get_dynamic_hd(processor=processor)
        return ImageSize(height=max_side, width=vit_image_size)

    def get_audio_num_frames(self, audio_len: int, sr: float) -> int:
        """
        Compute the output size of the `extract_features` method.

        Args:
            audio_len (int): Length of the input waveform in samples.
            sr (float): Sampling rate of the waveform, either 16000 or 8000.

        Returns:
            tuple (int, int): Output size as (T, D), where:
                T: Number of time frames.
                D: Number of Mel filterbank bins (80).
        """

        # Resample to 16000 or 8000 if needed
        if sr > 16000:
            audio_len //= sr // 16000
        elif 8000 <= sr < 16000:
            # We'll resample to 16K from 8K
            audio_len *= 2
        elif sr < 8000:
            raise RuntimeError(f"Unsupported sample rate {sr}")

        # Spectrogram parameters for 16 kHz
        win_length = 400  # Frame length in samples
        hop_length = 160  # Frame shift in samples

        # Calculate number of frames (T)
        num_frames = (audio_len - win_length) // hop_length + 1
        if num_frames < 1:
            raise ValueError("Waveform too short for given parameters.")

        # Return time frames (T)
        return num_frames

    def _compute_audio_embed_size(self, audio_frames: int) -> int:
        """
        Compute the size of audio embeddings from the number of audio frames.
        """
        # `_compute_audio_embed_size` in audio_processor use torch for
        # computation, therefore we re-implement it to use pythonic
        # numeric computation to avoid extra tensor conversion.
        audio_processor = self.get_feature_extractor()
        audio_compression_rate = audio_processor.audio_compression_rate
        audio_downsample_rate = audio_processor.audio_downsample_rate

        integer = audio_frames // audio_compression_rate
        remainder = audio_frames % audio_compression_rate
        result = integer + int(remainder > 0)

        integer = result // audio_downsample_rate
        remainder = result % audio_downsample_rate
        result = integer + int(remainder > 0)  # qformer compression

        return result

_compute_audio_embed_size

_compute_audio_embed_size(audio_frames: int) -> int

Compute the size of audio embeddings from the number of audio frames.

Source code in vllm/model_executor/models/phi4_multimodal.py
def _compute_audio_embed_size(self, audio_frames: int) -> int:
    """
    Compute the size of audio embeddings from the number of audio frames.
    """
    # `_compute_audio_embed_size` in audio_processor use torch for
    # computation, therefore we re-implement it to use pythonic
    # numeric computation to avoid extra tensor conversion.
    audio_processor = self.get_feature_extractor()
    audio_compression_rate = audio_processor.audio_compression_rate
    audio_downsample_rate = audio_processor.audio_downsample_rate

    integer = audio_frames // audio_compression_rate
    remainder = audio_frames % audio_compression_rate
    result = integer + int(remainder > 0)

    integer = result // audio_downsample_rate
    remainder = result % audio_downsample_rate
    result = integer + int(remainder > 0)  # qformer compression

    return result

_compute_num_image_tokens

_compute_num_image_tokens(
    orig_width: int,
    orig_height: int,
    dynamic_hd_size: int,
    vit_image_size: int,
    vit_patch_size: int,
    token_compression_factor: int = 2,
)

compute the number of tokens an image is expected to take up considering the image encoder architecture and exclude output features containing only padding pixels

for siglip, vit_image_size=448, vit_patch_size=14, so output will be 32x32 feature map NOTE right now, Phi4MM uses hard-coded token_compression_factor=2

Source code in vllm/model_executor/models/phi4_multimodal.py
def _compute_num_image_tokens(
    self,
    orig_width: int,
    orig_height: int,
    dynamic_hd_size: int,
    vit_image_size: int,
    vit_patch_size: int,
    token_compression_factor: int = 2,
):
    """
    compute the number of tokens an image is expected to take up considering
    the image encoder architecture and exclude output features containing 
    only padding pixels

    for siglip, vit_image_size=448, vit_patch_size=14, so output will be 
    32x32 feature map
    NOTE right now, Phi4MM uses hard-coded token_compression_factor=2
    """
    assert vit_image_size % vit_patch_size == 0, (
        "vit_image_size must be divisible by vit_patch_size")
    assert (vit_image_size // vit_patch_size %
            token_compression_factor == 0), (
                "vit_image_size // vit_patch_size must be divisible by "
                "token_compression_factor")

    target_aspect_ratio, target_height, target_width = (
        self._find_target_aspect_ratio(orig_width,
                                       orig_height,
                                       vit_image_size,
                                       dynamic_hd_size,
                                       min_num=1))
    assert target_aspect_ratio[0] * vit_image_size == target_width, (
        f"{target_aspect_ratio[0]} * {vit_image_size} != {target_width}")
    assert target_aspect_ratio[1] * vit_image_size == target_height, (
        f"{target_aspect_ratio[1]} * {vit_image_size} != {target_height}")
    assert (target_height % vit_image_size == 0
            and target_width % vit_image_size == 0)

    padding_height, padding_width = _get_padding_size(
        orig_width, orig_height, target_height, target_width)
    assert padding_width == 0 or padding_height == 0, \
        "padding_width or padding_height must be 0"

    target_feat_width = target_width // vit_patch_size
    target_feat_height = target_height // vit_patch_size
    if padding_width >= vit_patch_size:
        assert padding_height == 0, "padding_height not 0"
        non_pad_feat_width = target_feat_width - math.floor(
            padding_width / vit_patch_size)
        non_pad_feat_height = target_feat_height
    elif padding_height >= vit_patch_size:
        assert padding_width == 0, "padding_width not 0"
        non_pad_feat_height = target_feat_height - math.floor(
            padding_height / vit_patch_size)
        non_pad_feat_width = target_feat_width
    else:
        # small padding shorter than a vit patch
        non_pad_feat_width = target_feat_width
        non_pad_feat_height = target_feat_height

    feat_width = non_pad_feat_width // token_compression_factor
    feat_height = non_pad_feat_height // token_compression_factor
    # NOTE it's possible that the non-padding feature is not divisible
    if non_pad_feat_width % token_compression_factor != 0:
        feat_width += 1
    if non_pad_feat_height % token_compression_factor != 0:
        feat_height += 1
    num_hd_patch_tokens = feat_width * feat_height
    num_hd_newline_tokens = feat_height
    vit_feature_size = vit_image_size // vit_patch_size
    num_global_image_tokens = (vit_feature_size //
                               token_compression_factor)**2
    num_sep_tokens = 1
    num_global_image_newline_tokens = \
        vit_feature_size // token_compression_factor

    return (num_global_image_tokens + num_sep_tokens +
            num_hd_patch_tokens + num_hd_newline_tokens +
            num_global_image_newline_tokens)

_find_target_aspect_ratio

_find_target_aspect_ratio(
    orig_width: int,
    orig_height: int,
    image_size: int,
    max_num: int,
    min_num: int,
)
Source code in vllm/model_executor/models/phi4_multimodal.py
def _find_target_aspect_ratio(
    self,
    orig_width: int,
    orig_height: int,
    image_size: int,
    max_num: int,
    min_num: int,
):
    w_crop_num = math.ceil(orig_width / float(image_size))
    h_crop_num = math.ceil(orig_height / float(image_size))
    if w_crop_num * h_crop_num > max_num:
        aspect_ratio = orig_width / orig_height

        # calculate the existing image aspect ratio
        target_ratios = set((i, j) for i in range(1, max_num + 1)
                            for j in range(1, max_num + 1)
                            if i * j <= max_num and i * j >= min_num)
        target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

        # find the closest aspect ratio to the target
        image_processor = self.get_image_processor()
        target_aspect_ratio = image_processor.find_closest_aspect_ratio(
            aspect_ratio,
            target_ratios,
            orig_width,
            orig_height,
        )

        # calculate the target width and height
        target_width = image_size * target_aspect_ratio[0]
        target_height = image_size * target_aspect_ratio[1]
    else:
        target_width = image_size * w_crop_num
        target_height = image_size * h_crop_num
        target_aspect_ratio = (w_crop_num, h_crop_num)
    return target_aspect_ratio, target_height, target_width

get_audio_num_frames

get_audio_num_frames(audio_len: int, sr: float) -> int

Compute the output size of the extract_features method.

Parameters:

Name Type Description Default
audio_len int

Length of the input waveform in samples.

required
sr float

Sampling rate of the waveform, either 16000 or 8000.

required

Returns:

Name Type Description
tuple (int, int)

Output size as (T, D), where: T: Number of time frames. D: Number of Mel filterbank bins (80).

Source code in vllm/model_executor/models/phi4_multimodal.py
def get_audio_num_frames(self, audio_len: int, sr: float) -> int:
    """
    Compute the output size of the `extract_features` method.

    Args:
        audio_len (int): Length of the input waveform in samples.
        sr (float): Sampling rate of the waveform, either 16000 or 8000.

    Returns:
        tuple (int, int): Output size as (T, D), where:
            T: Number of time frames.
            D: Number of Mel filterbank bins (80).
    """

    # Resample to 16000 or 8000 if needed
    if sr > 16000:
        audio_len //= sr // 16000
    elif 8000 <= sr < 16000:
        # We'll resample to 16K from 8K
        audio_len *= 2
    elif sr < 8000:
        raise RuntimeError(f"Unsupported sample rate {sr}")

    # Spectrogram parameters for 16 kHz
    win_length = 400  # Frame length in samples
    hop_length = 160  # Frame shift in samples

    # Calculate number of frames (T)
    num_frames = (audio_len - win_length) // hop_length + 1
    if num_frames < 1:
        raise ValueError("Waveform too short for given parameters.")

    # Return time frames (T)
    return num_frames

get_dynamic_hd

get_dynamic_hd(
    processor: Optional[Phi4MultimodalProcessor] = None,
) -> int
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_dynamic_hd(
    self,
    processor: Optional[Phi4MMProcessor] = None,
) -> int:
    return self.get_image_processor(processor).dynamic_hd

get_feature_extractor

get_feature_extractor(
    **kwargs: object,
) -> Phi4MultimodalFeatureExtractor
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_feature_extractor(
        self, **kwargs: object) -> Phi4MultimodalFeatureExtractor:
    return self.get_hf_processor(**kwargs).audio_processor

get_hf_config

get_hf_config() -> Phi4MultimodalConfig
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_hf_config(self) -> Phi4MultimodalConfig:
    return self.ctx.get_hf_config(Phi4MultimodalConfig)

get_hf_processor

get_hf_processor(
    **kwargs: object,
) -> Phi4MultimodalProcessor
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_hf_processor(self, **kwargs: object) -> Phi4MMProcessor:
    return self.ctx.get_hf_processor(Phi4MMProcessor, **kwargs)

get_image_processor

get_image_processor(
    processor: Optional[Phi4MultimodalProcessor] = None,
) -> Phi4MultimodalImageProcessorFast
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_image_processor(
    self,
    processor: Optional[Phi4MMProcessor] = None,
) -> Phi4MultimodalImageProcessorFast:
    if processor is None:
        processor = self.get_hf_processor()
    return processor.image_processor

get_image_size_with_most_features

get_image_size_with_most_features(
    processor: Optional[Phi4MultimodalProcessor] = None,
) -> ImageSize
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_image_size_with_most_features(
    self,
    processor: Optional[Phi4MMProcessor] = None,
) -> ImageSize:
    vit_image_size = self.get_hf_config().vision_config.image_size

    max_side = vit_image_size * self.get_dynamic_hd(processor=processor)
    return ImageSize(height=max_side, width=vit_image_size)

get_num_image_tokens

get_num_image_tokens(
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Phi4MultimodalProcessor] = None,
) -> int
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
    processor: Optional[Phi4MMProcessor] = None,
) -> int:
    hf_config = self.get_hf_config()
    vision_config = hf_config.vision_config
    vit_image_size = vision_config.image_size
    vit_patch_size = vision_config.patch_size

    dynamic_hd_size = self.get_dynamic_hd(processor=processor)

    # we use default `token_compression_factor=2`,
    # since it's not in HF vision config.
    image_num_tokens = self._compute_num_image_tokens(
        image_width,
        image_height,
        dynamic_hd_size=dynamic_hd_size,
        vit_image_size=vit_image_size,
        vit_patch_size=vit_patch_size,
    )

    return image_num_tokens

get_supported_mm_limits

get_supported_mm_limits() -> Mapping[str, Optional[int]]
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"audio": None, "image": None}

Phi4MMProjector

Bases: Module

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MMProjector(nn.Module):

    def __init__(self, input_size: int, hidden_size: int):
        super().__init__()
        self.up = ColumnParallelLinear(input_size, hidden_size)
        self.down = RowParallelLinear(hidden_size, hidden_size)
        self.act = get_act_fn("gelu")

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, _ = self.up(x)
        x = self.act(x)
        x, _ = self.down(x)
        return x

act instance-attribute

act = get_act_fn('gelu')

down instance-attribute

down = RowParallelLinear(hidden_size, hidden_size)

up instance-attribute

up = ColumnParallelLinear(input_size, hidden_size)

__init__

__init__(input_size: int, hidden_size: int)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(self, input_size: int, hidden_size: int):
    super().__init__()
    self.up = ColumnParallelLinear(input_size, hidden_size)
    self.down = RowParallelLinear(hidden_size, hidden_size)
    self.act = get_act_fn("gelu")

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    x, _ = self.up(x)
    x = self.act(x)
    x, _ = self.down(x)
    return x

Phi4MultimodalAudioAttention

Bases: Module

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MultimodalAudioAttention(nn.Module):

    def __init__(
        self,
        config: Phi4MultimodalAudioConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.total_num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.total_num_heads
        if self.head_dim * self.total_num_heads != self.embed_dim:
            raise ValueError(
                "embed_dim must be divisible by num_heads "
                f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads}).")
        self.scale = self.head_dim**-0.5

        self.qkv_proj = QKVParallelLinear(
            hidden_size=self.embed_dim,
            head_size=self.head_dim,
            total_num_heads=self.total_num_heads,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )

        self.o_proj = RowParallelLinear(
            input_size=self.embed_dim,
            output_size=self.embed_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.out_proj",
        )

        self.tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank = get_tensor_model_parallel_rank()
        self.num_heads = divide(self.total_num_heads, self.tp_size)

    def split_attn_mask(self, attention_mask: torch.Tensor) -> torch.Tensor:
        start_idx = self.num_heads * self.tp_rank
        end_idx = self.num_heads * (self.tp_rank + 1)
        return attention_mask[:, start_idx:end_idx]

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
    ) -> torch.Tensor:
        qkv_states, _ = self.qkv_proj(hidden_states)
        query, key, value = qkv_states.chunk(3, dim=-1)

        bsz, seq_len, _ = query.size()
        query = query.view(bsz, seq_len, self.num_heads, self.head_dim)
        key = key.view(bsz, seq_len, self.num_heads, self.head_dim)
        value = value.view(bsz, seq_len, self.num_heads, self.head_dim)
        query, key, value = (x.transpose(1, 2) for x in (query, key, value))

        attention_mask = self.split_attn_mask(attention_mask)
        out = F.scaled_dot_product_attention(
            query,
            key,
            value,
            scale=self.scale,
            attn_mask=attention_mask,
        )
        out = out.transpose(1, 2).reshape(bsz, seq_len, -1)

        attn_output, _ = self.o_proj(out)

        return attn_output

config instance-attribute

config = config

embed_dim instance-attribute

embed_dim = hidden_size

head_dim instance-attribute

head_dim = embed_dim // total_num_heads

num_heads instance-attribute

num_heads = divide(total_num_heads, tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    input_size=embed_dim,
    output_size=embed_dim,
    quant_config=quant_config,
    prefix=f"{prefix}.out_proj",
)

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size=embed_dim,
    head_size=head_dim,
    total_num_heads=total_num_heads,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

scale instance-attribute

scale = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_attention_heads

tp_rank instance-attribute

tp_size instance-attribute

__init__

__init__(
    config: Phi4MultimodalAudioConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(
    self,
    config: Phi4MultimodalAudioConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.config = config
    self.embed_dim = config.hidden_size
    self.total_num_heads = config.num_attention_heads
    self.head_dim = self.embed_dim // self.total_num_heads
    if self.head_dim * self.total_num_heads != self.embed_dim:
        raise ValueError(
            "embed_dim must be divisible by num_heads "
            f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
            f" {self.num_heads}).")
    self.scale = self.head_dim**-0.5

    self.qkv_proj = QKVParallelLinear(
        hidden_size=self.embed_dim,
        head_size=self.head_dim,
        total_num_heads=self.total_num_heads,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )

    self.o_proj = RowParallelLinear(
        input_size=self.embed_dim,
        output_size=self.embed_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.out_proj",
    )

    self.tp_size = get_tensor_model_parallel_world_size()
    self.tp_rank = get_tensor_model_parallel_rank()
    self.num_heads = divide(self.total_num_heads, self.tp_size)

forward

forward(
    hidden_states: Tensor, attention_mask: Tensor
) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: torch.Tensor,
) -> torch.Tensor:
    qkv_states, _ = self.qkv_proj(hidden_states)
    query, key, value = qkv_states.chunk(3, dim=-1)

    bsz, seq_len, _ = query.size()
    query = query.view(bsz, seq_len, self.num_heads, self.head_dim)
    key = key.view(bsz, seq_len, self.num_heads, self.head_dim)
    value = value.view(bsz, seq_len, self.num_heads, self.head_dim)
    query, key, value = (x.transpose(1, 2) for x in (query, key, value))

    attention_mask = self.split_attn_mask(attention_mask)
    out = F.scaled_dot_product_attention(
        query,
        key,
        value,
        scale=self.scale,
        attn_mask=attention_mask,
    )
    out = out.transpose(1, 2).reshape(bsz, seq_len, -1)

    attn_output, _ = self.o_proj(out)

    return attn_output

split_attn_mask

split_attn_mask(attention_mask: Tensor) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def split_attn_mask(self, attention_mask: torch.Tensor) -> torch.Tensor:
    start_idx = self.num_heads * self.tp_rank
    end_idx = self.num_heads * (self.tp_rank + 1)
    return attention_mask[:, start_idx:end_idx]

Phi4MultimodalAudioConformerEncoderLayer

Bases: Module

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MultimodalAudioConformerEncoderLayer(nn.Module):

    def __init__(self, config: Phi4MultimodalAudioConfig):
        super().__init__()

        self.feed_forward_in = Phi4MultimodalAudioMLP(config)
        self.self_attn = Phi4MultimodalAudioAttention(config)
        self.conv = Phi4MultimodalAudioConvModule(config)
        self.feed_forward_out = Phi4MultimodalAudioMLP(config)
        self.layer_norm_att = nn.LayerNorm(config.hidden_size)
        self.layer_norm = nn.LayerNorm(config.hidden_size)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
    ) -> torch.Tensor:
        residual = hidden_states + 0.5 * self.feed_forward_in(hidden_states)
        hidden_states = self.layer_norm_att(residual)

        hidden_states = residual + self.self_attn(hidden_states,
                                                  attention_mask)
        hidden_states = hidden_states + self.conv(hidden_states)
        hidden_states = hidden_states + 0.5 * self.feed_forward_out(
            hidden_states)

        out = self.layer_norm(hidden_states)

        return out

conv instance-attribute

conv = Phi4MultimodalAudioConvModule(config)

feed_forward_in instance-attribute

feed_forward_in = Phi4MultimodalAudioMLP(config)

feed_forward_out instance-attribute

feed_forward_out = Phi4MultimodalAudioMLP(config)

layer_norm instance-attribute

layer_norm = LayerNorm(hidden_size)

layer_norm_att instance-attribute

layer_norm_att = LayerNorm(hidden_size)

self_attn instance-attribute

self_attn = Phi4MultimodalAudioAttention(config)

__init__

__init__(config: Phi4MultimodalAudioConfig)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(self, config: Phi4MultimodalAudioConfig):
    super().__init__()

    self.feed_forward_in = Phi4MultimodalAudioMLP(config)
    self.self_attn = Phi4MultimodalAudioAttention(config)
    self.conv = Phi4MultimodalAudioConvModule(config)
    self.feed_forward_out = Phi4MultimodalAudioMLP(config)
    self.layer_norm_att = nn.LayerNorm(config.hidden_size)
    self.layer_norm = nn.LayerNorm(config.hidden_size)

forward

forward(
    hidden_states: Tensor, attention_mask: Tensor
) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: torch.Tensor,
) -> torch.Tensor:
    residual = hidden_states + 0.5 * self.feed_forward_in(hidden_states)
    hidden_states = self.layer_norm_att(residual)

    hidden_states = residual + self.self_attn(hidden_states,
                                              attention_mask)
    hidden_states = hidden_states + self.conv(hidden_states)
    hidden_states = hidden_states + 0.5 * self.feed_forward_out(
        hidden_states)

    out = self.layer_norm(hidden_states)

    return out

Phi4MultimodalAudioMLP

Bases: Module

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MultimodalAudioMLP(nn.Module):

    def __init__(
        self,
        config: Phi4MultimodalAudioConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.layer_norm = nn.LayerNorm(config.hidden_size)
        self.act_fn = MulAndSilu()
        self.gate_up_proj = MergedColumnParallelLinear(
            config.hidden_size, [config.intermediate_size] * 2,
            bias=True,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj")
        self.down_proj = RowParallelLinear(config.intermediate_size,
                                           config.hidden_size,
                                           bias=True,
                                           quant_config=quant_config,
                                           prefix=f"{prefix}.down_proj")

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.layer_norm(hidden_states)
        hidden_states, _ = self.gate_up_proj(hidden_states)
        hidden_states = self.act_fn(hidden_states)
        hidden_states, _ = self.down_proj(hidden_states)
        return hidden_states

act_fn instance-attribute

act_fn = MulAndSilu()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_up_proj",
)

layer_norm instance-attribute

layer_norm = LayerNorm(hidden_size)

__init__

__init__(
    config: Phi4MultimodalAudioConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(
    self,
    config: Phi4MultimodalAudioConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.layer_norm = nn.LayerNorm(config.hidden_size)
    self.act_fn = MulAndSilu()
    self.gate_up_proj = MergedColumnParallelLinear(
        config.hidden_size, [config.intermediate_size] * 2,
        bias=True,
        quant_config=quant_config,
        prefix=f"{prefix}.gate_up_proj")
    self.down_proj = RowParallelLinear(config.intermediate_size,
                                       config.hidden_size,
                                       bias=True,
                                       quant_config=quant_config,
                                       prefix=f"{prefix}.down_proj")

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    hidden_states = self.layer_norm(hidden_states)
    hidden_states, _ = self.gate_up_proj(hidden_states)
    hidden_states = self.act_fn(hidden_states)
    hidden_states, _ = self.down_proj(hidden_states)
    return hidden_states

Phi4MultimodalAudioModel

Bases: Module

Source code in vllm/model_executor/models/phi4_multimodal.py
class Phi4MultimodalAudioModel(nn.Module):

    def __init__(self, config: Phi4MultimodalAudioConfig):
        super().__init__()
        self.config = config

        self.encoder_embedding = Phi4MMAudioMeanVarianceNormLayer(config)
        self.embed = Phi4MultimodalAudioNemoConvSubsampling(config)
        self.relative_attention_bias_layer = (
            Phi4MultimodalAudioRelativeAttentionBias(config))
        self.encoders = nn.ModuleList([
            Phi4MultimodalAudioConformerEncoderLayer(config)
            for _ in range(config.num_blocks)
        ])

    def _streaming_mask(
        self,
        seq_len: int,
        batch_size: int,
        chunk_size: int,
        left_chunk: int,
    ):
        # Create mask matrix for streaming
        # S stores start index. if chunksize is 18, s is [0,18,36,....]
        chunk_start_idx = np.arange(0, seq_len, chunk_size)

        enc_streaming_mask = (adaptive_enc_mask(
            seq_len, chunk_start_idx,
            left_window=left_chunk).unsqueeze(0).expand([batch_size, -1, -1]))
        return enc_streaming_mask

    def forward_embeddings(
        self,
        hidden_states: torch.Tensor,
        masks: torch.Tensor,
    ):
        """Forwarding the inputs through the top embedding layers"""
        seq_len = math.ceil(hidden_states.shape[1] /
                            self.config.time_reduction)
        if seq_len <= 0:
            raise ValueError(
                f"Sequence length after time reduction is invalid: {seq_len}."
                "Your input feature is too short.")

        batch_size = hidden_states.shape[0]

        enc_streaming_mask = self._streaming_mask(seq_len, batch_size,
                                                  self.config.chunk_size,
                                                  self.config.left_chunk)
        enc_streaming_mask = enc_streaming_mask.to(hidden_states.device)

        hidden_states, masks = self.embed(hidden_states, masks)

        streaming_mask = enc_streaming_mask
        if streaming_mask is not None and masks is not None:
            hs_mask = masks & streaming_mask
        elif masks is not None:
            hs_mask = masks
        else:
            hs_mask = streaming_mask

        return hidden_states, hs_mask, masks

    def calculate_hs_mask(self, hidden_states: torch.Tensor,
                          device: torch.device, mask: torch.Tensor):
        max_audio_length = hidden_states.shape[1]
        batch_size = hidden_states.shape[0]
        enc_streaming_mask = self._streaming_mask(max_audio_length, batch_size,
                                                  self.config.chunk_size,
                                                  self.config.left_chunk)
        enc_streaming_mask = enc_streaming_mask.to(device)
        if mask is None:
            return enc_streaming_mask

        feature_lens = mask.sum(1)
        padding_length = feature_lens
        pad_mask = torch.arange(0, max_audio_length, device=device).expand(
            padding_length.size(0), -1) < padding_length.unsqueeze(1)
        pad_mask = pad_mask.unsqueeze(1)
        pad_mask = pad_mask & enc_streaming_mask
        return pad_mask

    def forward(self,
                hidden_states: torch.Tensor,
                mask: Optional[torch.Tensor] = None):
        hidden_states = self.encoder_embedding(hidden_states)
        hidden_states, hs_mask, mask = self.forward_embeddings(
            hidden_states, mask)

        unfolded = False
        bs, seq_len, _ = hidden_states.shape
        max_seq_len = 500  # maximum position for absolute positional encoding
        if seq_len > max_seq_len:
            # audio sequence is longer than max_seq_len,
            # unfold it into chunks of max_seq_len
            unfolded = True
            # the unfold op will drop residual frames,
            # pad it to the multiple of max_seq_len
            if seq_len % max_seq_len > 0:
                chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
            else:
                chunk_pad_size = 0
            if chunk_pad_size > 0:
                hidden_states_pad = F.pad(hidden_states,
                                          (0, 0, 0, chunk_pad_size),
                                          "constant", 0)
                hidden_states = hidden_states_pad.to(hidden_states.device)

            hidden_states = unfold_tensor(hidden_states, max_seq_len)
            masks_unfold = None
            if mask is not None:
                # revise hs_mask here because the previous calculated hs_mask
                # did not consider extra pad
                subsampled_pad_mask = mask.squeeze(
                    1)  # [bz, subsampled_unmask_seq_len]
                extra_padded_subsamlped_pad_mask = F.pad(
                    subsampled_pad_mask, (0, chunk_pad_size), "constant",
                    False)  # extra padding to the pad mask
                extra_padded_subsamlped_pad_mask = (
                    extra_padded_subsamlped_pad_mask.unsqueeze(-1).float())
                masks_unfold = unfold_tensor(
                    extra_padded_subsamlped_pad_mask, max_seq_len
                )  # unfold the pad mask like we did to the input tensor
                masks_unfold = masks_unfold.squeeze(
                    -1).bool()  # unfold op does not support bool tensor
            hs_mask = self.calculate_hs_mask(
                hidden_states, hidden_states.device, masks_unfold
            )  # calculate hs_mask based on the unfolded pad mask

        relative_attention_bias = self.relative_attention_bias_layer(
            hidden_states)
        attention_mask = hs_mask.unsqueeze(1) + relative_attention_bias

        for layer in self.encoders:
            hidden_states = layer(hidden_states, attention_mask)

        if unfolded:
            embed_dim = hidden_states.shape[-1]
            hidden_states = hidden_states.reshape(bs, -1, embed_dim)
            # if we ever padded before unfolding, we need to remove the padding
            if chunk_pad_size > 0:
                hidden_states = hidden_states[:, :-chunk_pad_size, :]

        return hidden_states

config instance-attribute

config = config

embed instance-attribute

embed = Phi4MultimodalAudioNemoConvSubsampling(config)

encoder_embedding instance-attribute

encoder_embedding = Phi4MMAudioMeanVarianceNormLayer(config)

encoders instance-attribute

encoders = ModuleList(
    [
        (Phi4MultimodalAudioConformerEncoderLayer(config))
        for _ in (range(num_blocks))
    ]
)

relative_attention_bias_layer instance-attribute

relative_attention_bias_layer = (
    Phi4MultimodalAudioRelativeAttentionBias(config)
)

__init__

__init__(config: Phi4MultimodalAudioConfig)
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(self, config: Phi4MultimodalAudioConfig):
    super().__init__()
    self.config = config

    self.encoder_embedding = Phi4MMAudioMeanVarianceNormLayer(config)
    self.embed = Phi4MultimodalAudioNemoConvSubsampling(config)
    self.relative_attention_bias_layer = (
        Phi4MultimodalAudioRelativeAttentionBias(config))
    self.encoders = nn.ModuleList([
        Phi4MultimodalAudioConformerEncoderLayer(config)
        for _ in range(config.num_blocks)
    ])

_streaming_mask

_streaming_mask(
    seq_len: int,
    batch_size: int,
    chunk_size: int,
    left_chunk: int,
)
Source code in vllm/model_executor/models/phi4_multimodal.py
def _streaming_mask(
    self,
    seq_len: int,
    batch_size: int,
    chunk_size: int,
    left_chunk: int,
):
    # Create mask matrix for streaming
    # S stores start index. if chunksize is 18, s is [0,18,36,....]
    chunk_start_idx = np.arange(0, seq_len, chunk_size)

    enc_streaming_mask = (adaptive_enc_mask(
        seq_len, chunk_start_idx,
        left_window=left_chunk).unsqueeze(0).expand([batch_size, -1, -1]))
    return enc_streaming_mask

calculate_hs_mask

calculate_hs_mask(
    hidden_states: Tensor, device: device, mask: Tensor
)
Source code in vllm/model_executor/models/phi4_multimodal.py
def calculate_hs_mask(self, hidden_states: torch.Tensor,
                      device: torch.device, mask: torch.Tensor):
    max_audio_length = hidden_states.shape[1]
    batch_size = hidden_states.shape[0]
    enc_streaming_mask = self._streaming_mask(max_audio_length, batch_size,
                                              self.config.chunk_size,
                                              self.config.left_chunk)
    enc_streaming_mask = enc_streaming_mask.to(device)
    if mask is None:
        return enc_streaming_mask

    feature_lens = mask.sum(1)
    padding_length = feature_lens
    pad_mask = torch.arange(0, max_audio_length, device=device).expand(
        padding_length.size(0), -1) < padding_length.unsqueeze(1)
    pad_mask = pad_mask.unsqueeze(1)
    pad_mask = pad_mask & enc_streaming_mask
    return pad_mask

forward

forward(
    hidden_states: Tensor, mask: Optional[Tensor] = None
)
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(self,
            hidden_states: torch.Tensor,
            mask: Optional[torch.Tensor] = None):
    hidden_states = self.encoder_embedding(hidden_states)
    hidden_states, hs_mask, mask = self.forward_embeddings(
        hidden_states, mask)

    unfolded = False
    bs, seq_len, _ = hidden_states.shape
    max_seq_len = 500  # maximum position for absolute positional encoding
    if seq_len > max_seq_len:
        # audio sequence is longer than max_seq_len,
        # unfold it into chunks of max_seq_len
        unfolded = True
        # the unfold op will drop residual frames,
        # pad it to the multiple of max_seq_len
        if seq_len % max_seq_len > 0:
            chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
        else:
            chunk_pad_size = 0
        if chunk_pad_size > 0:
            hidden_states_pad = F.pad(hidden_states,
                                      (0, 0, 0, chunk_pad_size),
                                      "constant", 0)
            hidden_states = hidden_states_pad.to(hidden_states.device)

        hidden_states = unfold_tensor(hidden_states, max_seq_len)
        masks_unfold = None
        if mask is not None:
            # revise hs_mask here because the previous calculated hs_mask
            # did not consider extra pad
            subsampled_pad_mask = mask.squeeze(
                1)  # [bz, subsampled_unmask_seq_len]
            extra_padded_subsamlped_pad_mask = F.pad(
                subsampled_pad_mask, (0, chunk_pad_size), "constant",
                False)  # extra padding to the pad mask
            extra_padded_subsamlped_pad_mask = (
                extra_padded_subsamlped_pad_mask.unsqueeze(-1).float())
            masks_unfold = unfold_tensor(
                extra_padded_subsamlped_pad_mask, max_seq_len
            )  # unfold the pad mask like we did to the input tensor
            masks_unfold = masks_unfold.squeeze(
                -1).bool()  # unfold op does not support bool tensor
        hs_mask = self.calculate_hs_mask(
            hidden_states, hidden_states.device, masks_unfold
        )  # calculate hs_mask based on the unfolded pad mask

    relative_attention_bias = self.relative_attention_bias_layer(
        hidden_states)
    attention_mask = hs_mask.unsqueeze(1) + relative_attention_bias

    for layer in self.encoders:
        hidden_states = layer(hidden_states, attention_mask)

    if unfolded:
        embed_dim = hidden_states.shape[-1]
        hidden_states = hidden_states.reshape(bs, -1, embed_dim)
        # if we ever padded before unfolding, we need to remove the padding
        if chunk_pad_size > 0:
            hidden_states = hidden_states[:, :-chunk_pad_size, :]

    return hidden_states

forward_embeddings

forward_embeddings(hidden_states: Tensor, masks: Tensor)

Forwarding the inputs through the top embedding layers

Source code in vllm/model_executor/models/phi4_multimodal.py
def forward_embeddings(
    self,
    hidden_states: torch.Tensor,
    masks: torch.Tensor,
):
    """Forwarding the inputs through the top embedding layers"""
    seq_len = math.ceil(hidden_states.shape[1] /
                        self.config.time_reduction)
    if seq_len <= 0:
        raise ValueError(
            f"Sequence length after time reduction is invalid: {seq_len}."
            "Your input feature is too short.")

    batch_size = hidden_states.shape[0]

    enc_streaming_mask = self._streaming_mask(seq_len, batch_size,
                                              self.config.chunk_size,
                                              self.config.left_chunk)
    enc_streaming_mask = enc_streaming_mask.to(hidden_states.device)

    hidden_states, masks = self.embed(hidden_states, masks)

    streaming_mask = enc_streaming_mask
    if streaming_mask is not None and masks is not None:
        hs_mask = masks & streaming_mask
    elif masks is not None:
        hs_mask = masks
    else:
        hs_mask = streaming_mask

    return hidden_states, hs_mask, masks

Phi4MultimodalForCausalLM

Bases: Module, SupportsLoRA, SupportsMultiModal

Implements the Phi-4-multimodal-instruct model in vLLM.

Source code in vllm/model_executor/models/phi4_multimodal.py
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
@MULTIMODAL_REGISTRY.register_processor(
    Phi4MMMultiModalProcessor,
    info=Phi4MMProcessingInfo,
    dummy_inputs=Phi4MMDummyInputsBuilder,
)
class Phi4MultimodalForCausalLM(nn.Module, SupportsLoRA, SupportsMultiModal):
    """
    Implements the Phi-4-multimodal-instruct model in vLLM.
    """
    packed_modules_mapping = {
        "qkv_proj": [
            "qkv_proj",
        ],
        "gate_up_proj": [
            "gate_up_proj",
        ],
    }

    hf_to_vllm_mapper = WeightsMapper(
        orig_to_new_prefix={
            # Multimodal embedding
            "model.embed_tokens_extend.": "",
            # LLM backbone
            "model.": "language_model.model.",
        },
        orig_to_new_substr={
            # projection
            ".img_projection_": ".img_projection.",
            ".up_proj_for_speech.": ".speech_projection.up.",
            ".up_proj_for_vision_speech.": ".vision_speech_projection.up.",
            ".down_proj_for_speech.": ".speech_projection.down.",
            ".down_proj_for_vision_speech.": ".vision_speech_projection.down.",
        },
    )

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return "<|image|>"
        if modality.startswith("audio"):
            return "<|audio|>"

        raise ValueError("Only image or audio modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        multimodal_config = vllm_config.model_config.multimodal_config
        self.config = config
        self.multimodal_config = multimodal_config

        # TODO: Optionally initializes these for supporting input embeddings.
        self.image_embed = Phi4MMImageEmbedding(
            config,
            # prefix=maybe_prefix(prefix, "image_embed"),
        )
        self.audio_embed = Phi4MMAudioEmbedding(
            config,
            # prefix=maybe_prefix(prefix, "audio_embed"),
        )

        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            prefix=maybe_prefix(prefix, "language_model"),
            architectures=["Phi3ForCausalLM"],
        )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors)

    def _parse_and_validate_audio_input(
            self, **kwargs: object) -> Optional[Phi4MMAudioInputs]:
        """
        Parse and validate the audio input to the model.  This handles both 
        audio features and audio embeddings, but only the former is used for
        now.

        Args:
            kwargs (object): Keyword arguments.

        Returns:
            Optional[Phi4MMAudioInputs]: Parsed and validated audio inputs.
        """
        audio_features = kwargs.pop("audio_input_features", None)
        audio_embeds = kwargs.pop("audio_embeds", None)

        if audio_features is None and audio_embeds is None:
            return None

        if audio_features is not None:
            if not isinstance(audio_features, (torch.Tensor, list)):
                raise ValueError("Incorrect type of audio features. "
                                 f"Got type: {type(audio_features)}")

            return Phi4MMAudioFeatureInputs(type="audio_features",
                                            data=flatten_bn(audio_features))

        if audio_embeds is not None:
            if not isinstance(audio_embeds, (torch.Tensor, list)):
                raise ValueError("Incorrect type of audio embeds. "
                                 f"Got type: {type(audio_embeds)}")

            return Phi4MMAudioEmbeddingInputs(type="audio_embeds",
                                              data=audio_embeds)

        raise AssertionError("This line should be unreachable.")

    def _process_audio_input(self, audio_input: Phi4MMAudioInputs,
                             audio_projection_mode: str) -> NestedTensors:
        """
        Create the audio embeddings from the audio input, where the audio input
        is pairs of audio features and audio embed lengths.  The audio input is
        created by `input_mapper_for_phi4mm_audio`.

        Args:
            audio_input (Phi4MMAudioInputs): Audio input.

        Returns:
            NestedTensors: Audio embeddings
        """
        if audio_input["type"] == "audio_embeds":
            return audio_input["data"]

        audio_features = audio_input["data"]
        # (e.g. multiple examples) and the second dim is the multi-audio dim
        # (e.g. multiple audios in the same example)

        dtype = next(self.audio_embed.parameters()).dtype
        audio_embeds = [
            self.audio_embed(
                features.unsqueeze(0).to(dtype),
                audio_projection_mode=audio_projection_mode,
            ) for features in audio_features
        ]
        return audio_embeds

    def _parse_and_validate_image_input(
            self, **kwargs: object) -> Optional[Phi4MMImagePixelInputs]:
        image_pixel_values: NestedTensors = kwargs.get("image_pixel_values")
        if image_pixel_values is None:
            return None

        image_sizes = kwargs.get("image_sizes")
        image_attention_mask = kwargs.get("image_attention_mask")
        num_img_tokens = kwargs.get("num_img_tokens")
        assert image_sizes is not None and image_attention_mask is not None\
              and num_img_tokens is not None, "Missing image inputs"

        if is_list_of(image_pixel_values, torch.Tensor):
            assert all(p.dim() == 5
                       for p in image_pixel_values), "Incorrect image inputs"
            # list len is batch_size.
            # each tensor has dimension: num_img_per_example, num_hd_patches,
            # channels, height, width.
            # need to pad along num_hd_patches.
            # mask size num_img_per_prompt, num_hd_patches, feat_h, heat_w.
            image_pixel_values = cat_with_pad(image_pixel_values, dim=0)
        elif isinstance(image_pixel_values, torch.Tensor):
            # dimension: batch_size, num_img_per_example, num_hd_patches,
            # channels, height, width.
            # we flatten first 2 dims to make it a single large batch for
            # SigLIP Encoder.
            assert image_pixel_values.dim() == 6, "Incorrect image inputs"
            image_pixel_values = image_pixel_values.flatten(0, 1)
        else:
            raise ValueError("Incorrect image_pixel_values inputs")

        if isinstance(image_attention_mask, list):
            image_attention_mask = cat_with_pad(image_attention_mask, dim=0)
        elif isinstance(image_attention_mask, torch.Tensor):
            image_attention_mask = image_attention_mask.flatten(0, 1)
        else:
            raise ValueError("Incorrect image_attention_mask inputs")

        if isinstance(image_sizes, list):
            image_sizes = torch.cat(image_sizes, dim=0)
        elif isinstance(image_sizes, torch.Tensor):
            image_sizes = image_sizes.flatten(0, 1)
        else:
            raise ValueError("Incorrect image_attention_mask inputs")

        if isinstance(num_img_tokens, list):
            num_img_tokens = [
                n for num_tensor in num_img_tokens
                for n in num_tensor.tolist()
            ]
        elif isinstance(num_img_tokens, torch.Tensor):
            num_img_tokens = num_img_tokens.flatten(0, 1).tolist()
        else:
            raise ValueError("Incorrect image_attention_mask inputs")

        return Phi4MMImagePixelInputs(
            type="pixel_values",
            data=image_pixel_values,
            image_sizes=image_sizes,
            image_attention_mask=image_attention_mask,
            num_img_tokens=num_img_tokens,
        )

    def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
        modalities = {}

        # Preserve the order of modalities if there are multiple of them
        # from the order of kwargs.
        for input_key in kwargs:
            if input_key in ("image_pixel_values",
                             "image_embeds") and "images" not in modalities:
                modalities["images"] = self._parse_and_validate_image_input(
                    **kwargs)
            if input_key in ("audio_input_features",
                             "audio_embeds") and "audios" not in modalities:
                modalities["audios"] = self._parse_and_validate_audio_input(
                    **kwargs)

        return modalities

    def _process_image_input(
            self, image_input: Phi4MMImagePixelInputs) -> list[torch.Tensor]:
        if image_input["type"] == "image_embeds":
            image_embeds = image_input["image_embeds"].type(self.visual.dtype)
        else:
            dtype = next(self.image_embed.parameters()).dtype
            pixel_values = image_input['data'].to(dtype)
            image_sizes = image_input['image_sizes']
            image_attention_mask = image_input['image_attention_mask']
            image_embeds = self.image_embed(pixel_values, image_sizes,
                                            image_attention_mask)
        return image_embeds

    def get_multimodal_embeddings(
            self, **kwargs: object) -> Optional[MultiModalEmbeddings]:

        modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
        if not modalities:
            return None

        # The result multimodal_embeddings is tuple of tensors, with each
        # tensor correspoending to a multimodal data item (image or video).
        multimodal_embeddings: tuple[torch.Tensor, ...] = ()

        # NOTE: It is important to iterate over the keys in this dictionary
        # to preserve the order of the modalities.
        audio_projection_mode = 'speech'
        for modality in modalities:
            # make sure process images first
            if modality == "images":
                audio_projection_mode = "vision"
                image_input = modalities["images"]
                vision_embeddings = self._process_image_input(image_input)
                multimodal_embeddings += tuple(vision_embeddings)
            if modality == "audios":
                audio_input = modalities["audios"]
                audio_embeddings = self._process_audio_input(
                    audio_input, audio_projection_mode=audio_projection_mode)
                multimodal_embeddings += tuple(audio_embeddings)

        return multimodal_embeddings

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:
        inputs_embeds = self.language_model.get_input_embeddings(input_ids)
        if multimodal_embeddings is not None:
            inputs_embeds = merge_multimodal_embeddings(
                input_ids, inputs_embeds, multimodal_embeddings,
                [_IMAGE_PLACEHOLDER_TOKEN_ID, _AUDIO_PLACEHOLDER_TOKEN_ID])
        return inputs_embeds

    def get_input_embeddings_v0(
        self,
        input_ids: torch.Tensor,
        image_input: Optional[Phi4MMImagePixelInputs] = None,
        audio_input: Optional[Phi4MMAudioFeatureInputs] = None,
    ) -> torch.Tensor:
        audio_projection_mode = 'speech'
        inputs_embeds = self.get_input_embeddings(input_ids)
        if image_input is not None:
            image_embeds = self._process_image_input(image_input)
            inputs_embeds = merge_multimodal_embeddings(
                input_ids,
                inputs_embeds,
                image_embeds,
                placeholder_token_id=_IMAGE_PLACEHOLDER_TOKEN_ID,
            )
            audio_projection_mode = 'vision'

        if audio_input is not None:
            audio_embeds = self._process_audio_input(
                audio_input, audio_projection_mode=audio_projection_mode)
            inputs_embeds = merge_multimodal_embeddings(
                input_ids,
                inputs_embeds,
                audio_embeds,
                placeholder_token_id=_AUDIO_PLACEHOLDER_TOKEN_ID,
            )
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> torch.Tensor:
        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner from
        # `get_multimodal_embeddings` and `get_input_embeddings`, this
        # condition is only for v0 compatibility.
        elif inputs_embeds is None:
            image_input = self._parse_and_validate_image_input(**kwargs)
            audio_input = self._parse_and_validate_audio_input(**kwargs)

            if image_input is None and audio_input is None:
                inputs_embeds = None
            else:
                inputs_embeds = self.get_input_embeddings_v0(
                    input_ids,
                    image_input=image_input,
                    audio_input=audio_input)
                input_ids = None

        hidden_states = self.language_model(
            input_ids,
            positions,
            intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )

        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

    def get_mm_mapping(self) -> MultiModelKeys:
        """
        Get the module prefix in multimodal models
        """
        return MultiModelKeys.from_string_field(
            language_model="language_model.",
            connector=[
                "img_projection", "vision_speech_projection",
                "speech_projection"
            ],
            tower_model=["image_embed", "audio_embed"],
        )

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

audio_embed instance-attribute

audio_embed = Phi4MMAudioEmbedding(config)

config instance-attribute

config = config

hf_to_vllm_mapper class-attribute instance-attribute

hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={
        "model.embed_tokens_extend.": "",
        "model.": "language_model.model.",
    },
    orig_to_new_substr={
        ".img_projection_": ".img_projection.",
        ".up_proj_for_speech.": ".speech_projection.up.",
        ".up_proj_for_vision_speech.": ".vision_speech_projection.up.",
        ".down_proj_for_speech.": ".speech_projection.down.",
        ".down_proj_for_vision_speech.": ".vision_speech_projection.down.",
    },
)

image_embed instance-attribute

image_embed = Phi4MMImageEmbedding(config)

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "language_model"),
    architectures=["Phi3ForCausalLM"],
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

multimodal_config instance-attribute

multimodal_config = multimodal_config

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["qkv_proj"],
    "gate_up_proj": ["gate_up_proj"],
}

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/phi4_multimodal.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    multimodal_config = vllm_config.model_config.multimodal_config
    self.config = config
    self.multimodal_config = multimodal_config

    # TODO: Optionally initializes these for supporting input embeddings.
    self.image_embed = Phi4MMImageEmbedding(
        config,
        # prefix=maybe_prefix(prefix, "image_embed"),
    )
    self.audio_embed = Phi4MMAudioEmbedding(
        config,
        # prefix=maybe_prefix(prefix, "audio_embed"),
    )

    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        prefix=maybe_prefix(prefix, "language_model"),
        architectures=["Phi3ForCausalLM"],
    )

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors)

_parse_and_validate_audio_input

_parse_and_validate_audio_input(
    **kwargs: object,
) -> Optional[Phi4MMAudioInputs]

Parse and validate the audio input to the model. This handles both audio features and audio embeddings, but only the former is used for now.

Parameters:

Name Type Description Default
kwargs object

Keyword arguments.

{}

Returns:

Type Description
Optional[Phi4MMAudioInputs]

Optional[Phi4MMAudioInputs]: Parsed and validated audio inputs.

Source code in vllm/model_executor/models/phi4_multimodal.py
def _parse_and_validate_audio_input(
        self, **kwargs: object) -> Optional[Phi4MMAudioInputs]:
    """
    Parse and validate the audio input to the model.  This handles both 
    audio features and audio embeddings, but only the former is used for
    now.

    Args:
        kwargs (object): Keyword arguments.

    Returns:
        Optional[Phi4MMAudioInputs]: Parsed and validated audio inputs.
    """
    audio_features = kwargs.pop("audio_input_features", None)
    audio_embeds = kwargs.pop("audio_embeds", None)

    if audio_features is None and audio_embeds is None:
        return None

    if audio_features is not None:
        if not isinstance(audio_features, (torch.Tensor, list)):
            raise ValueError("Incorrect type of audio features. "
                             f"Got type: {type(audio_features)}")

        return Phi4MMAudioFeatureInputs(type="audio_features",
                                        data=flatten_bn(audio_features))

    if audio_embeds is not None:
        if not isinstance(audio_embeds, (torch.Tensor, list)):
            raise ValueError("Incorrect type of audio embeds. "
                             f"Got type: {type(audio_embeds)}")

        return Phi4MMAudioEmbeddingInputs(type="audio_embeds",
                                          data=audio_embeds)

    raise AssertionError("This line should be unreachable.")

_parse_and_validate_image_input

_parse_and_validate_image_input(
    **kwargs: object,
) -> Optional[Phi4MMImagePixelInputs]
Source code in vllm/model_executor/models/phi4_multimodal.py
def _parse_and_validate_image_input(
        self, **kwargs: object) -> Optional[Phi4MMImagePixelInputs]:
    image_pixel_values: NestedTensors = kwargs.get("image_pixel_values")
    if image_pixel_values is None:
        return None

    image_sizes = kwargs.get("image_sizes")
    image_attention_mask = kwargs.get("image_attention_mask")
    num_img_tokens = kwargs.get("num_img_tokens")
    assert image_sizes is not None and image_attention_mask is not None\
          and num_img_tokens is not None, "Missing image inputs"

    if is_list_of(image_pixel_values, torch.Tensor):
        assert all(p.dim() == 5
                   for p in image_pixel_values), "Incorrect image inputs"
        # list len is batch_size.
        # each tensor has dimension: num_img_per_example, num_hd_patches,
        # channels, height, width.
        # need to pad along num_hd_patches.
        # mask size num_img_per_prompt, num_hd_patches, feat_h, heat_w.
        image_pixel_values = cat_with_pad(image_pixel_values, dim=0)
    elif isinstance(image_pixel_values, torch.Tensor):
        # dimension: batch_size, num_img_per_example, num_hd_patches,
        # channels, height, width.
        # we flatten first 2 dims to make it a single large batch for
        # SigLIP Encoder.
        assert image_pixel_values.dim() == 6, "Incorrect image inputs"
        image_pixel_values = image_pixel_values.flatten(0, 1)
    else:
        raise ValueError("Incorrect image_pixel_values inputs")

    if isinstance(image_attention_mask, list):
        image_attention_mask = cat_with_pad(image_attention_mask, dim=0)
    elif isinstance(image_attention_mask, torch.Tensor):
        image_attention_mask = image_attention_mask.flatten(0, 1)
    else:
        raise ValueError("Incorrect image_attention_mask inputs")

    if isinstance(image_sizes, list):
        image_sizes = torch.cat(image_sizes, dim=0)
    elif isinstance(image_sizes, torch.Tensor):
        image_sizes = image_sizes.flatten(0, 1)
    else:
        raise ValueError("Incorrect image_attention_mask inputs")

    if isinstance(num_img_tokens, list):
        num_img_tokens = [
            n for num_tensor in num_img_tokens
            for n in num_tensor.tolist()
        ]
    elif isinstance(num_img_tokens, torch.Tensor):
        num_img_tokens = num_img_tokens.flatten(0, 1).tolist()
    else:
        raise ValueError("Incorrect image_attention_mask inputs")

    return Phi4MMImagePixelInputs(
        type="pixel_values",
        data=image_pixel_values,
        image_sizes=image_sizes,
        image_attention_mask=image_attention_mask,
        num_img_tokens=num_img_tokens,
    )

_parse_and_validate_multimodal_inputs

_parse_and_validate_multimodal_inputs(
    **kwargs: object,
) -> dict
Source code in vllm/model_executor/models/phi4_multimodal.py
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
    modalities = {}

    # Preserve the order of modalities if there are multiple of them
    # from the order of kwargs.
    for input_key in kwargs:
        if input_key in ("image_pixel_values",
                         "image_embeds") and "images" not in modalities:
            modalities["images"] = self._parse_and_validate_image_input(
                **kwargs)
        if input_key in ("audio_input_features",
                         "audio_embeds") and "audios" not in modalities:
            modalities["audios"] = self._parse_and_validate_audio_input(
                **kwargs)

    return modalities

_process_audio_input

_process_audio_input(
    audio_input: Phi4MMAudioInputs,
    audio_projection_mode: str,
) -> NestedTensors

Create the audio embeddings from the audio input, where the audio input is pairs of audio features and audio embed lengths. The audio input is created by input_mapper_for_phi4mm_audio.

Parameters:

Name Type Description Default
audio_input Phi4MMAudioInputs

Audio input.

required

Returns:

Name Type Description
NestedTensors NestedTensors

Audio embeddings

Source code in vllm/model_executor/models/phi4_multimodal.py
def _process_audio_input(self, audio_input: Phi4MMAudioInputs,
                         audio_projection_mode: str) -> NestedTensors:
    """
    Create the audio embeddings from the audio input, where the audio input
    is pairs of audio features and audio embed lengths.  The audio input is
    created by `input_mapper_for_phi4mm_audio`.

    Args:
        audio_input (Phi4MMAudioInputs): Audio input.

    Returns:
        NestedTensors: Audio embeddings
    """
    if audio_input["type"] == "audio_embeds":
        return audio_input["data"]

    audio_features = audio_input["data"]
    # (e.g. multiple examples) and the second dim is the multi-audio dim
    # (e.g. multiple audios in the same example)

    dtype = next(self.audio_embed.parameters()).dtype
    audio_embeds = [
        self.audio_embed(
            features.unsqueeze(0).to(dtype),
            audio_projection_mode=audio_projection_mode,
        ) for features in audio_features
    ]
    return audio_embeds

_process_image_input

_process_image_input(
    image_input: Phi4MMImagePixelInputs,
) -> list[Tensor]
Source code in vllm/model_executor/models/phi4_multimodal.py
def _process_image_input(
        self, image_input: Phi4MMImagePixelInputs) -> list[torch.Tensor]:
    if image_input["type"] == "image_embeds":
        image_embeds = image_input["image_embeds"].type(self.visual.dtype)
    else:
        dtype = next(self.image_embed.parameters()).dtype
        pixel_values = image_input['data'].to(dtype)
        image_sizes = image_input['image_sizes']
        image_attention_mask = image_input['image_attention_mask']
        image_embeds = self.image_embed(pixel_values, image_sizes,
                                        image_attention_mask)
    return image_embeds

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/phi4_multimodal.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states,
                                              sampling_metadata)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> torch.Tensor:
    if intermediate_tensors is not None:
        inputs_embeds = None

    # NOTE: In v1, inputs_embeds is always generated at model runner from
    # `get_multimodal_embeddings` and `get_input_embeddings`, this
    # condition is only for v0 compatibility.
    elif inputs_embeds is None:
        image_input = self._parse_and_validate_image_input(**kwargs)
        audio_input = self._parse_and_validate_audio_input(**kwargs)

        if image_input is None and audio_input is None:
            inputs_embeds = None
        else:
            inputs_embeds = self.get_input_embeddings_v0(
                input_ids,
                image_input=image_input,
                audio_input=audio_input)
            input_ids = None

    hidden_states = self.language_model(
        input_ids,
        positions,
        intermediate_tensors,
        inputs_embeds=inputs_embeds,
    )

    return hidden_states

get_input_embeddings

get_input_embeddings(
    input_ids: Tensor,
    multimodal_embeddings: Optional[
        MultiModalEmbeddings
    ] = None,
) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_input_embeddings(
    self,
    input_ids: torch.Tensor,
    multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
    inputs_embeds = self.language_model.get_input_embeddings(input_ids)
    if multimodal_embeddings is not None:
        inputs_embeds = merge_multimodal_embeddings(
            input_ids, inputs_embeds, multimodal_embeddings,
            [_IMAGE_PLACEHOLDER_TOKEN_ID, _AUDIO_PLACEHOLDER_TOKEN_ID])
    return inputs_embeds

get_input_embeddings_v0

get_input_embeddings_v0(
    input_ids: Tensor,
    image_input: Optional[Phi4MMImagePixelInputs] = None,
    audio_input: Optional[Phi4MMAudioFeatureInputs] = None,
) -> Tensor
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_input_embeddings_v0(
    self,
    input_ids: torch.Tensor,
    image_input: Optional[Phi4MMImagePixelInputs] = None,
    audio_input: Optional[Phi4MMAudioFeatureInputs] = None,
) -> torch.Tensor:
    audio_projection_mode = 'speech'
    inputs_embeds = self.get_input_embeddings(input_ids)
    if image_input is not None:
        image_embeds = self._process_image_input(image_input)
        inputs_embeds = merge_multimodal_embeddings(
            input_ids,
            inputs_embeds,
            image_embeds,
            placeholder_token_id=_IMAGE_PLACEHOLDER_TOKEN_ID,
        )
        audio_projection_mode = 'vision'

    if audio_input is not None:
        audio_embeds = self._process_audio_input(
            audio_input, audio_projection_mode=audio_projection_mode)
        inputs_embeds = merge_multimodal_embeddings(
            input_ids,
            inputs_embeds,
            audio_embeds,
            placeholder_token_id=_AUDIO_PLACEHOLDER_TOKEN_ID,
        )
    return inputs_embeds

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_mm_mapping

get_mm_mapping() -> MultiModelKeys

Get the module prefix in multimodal models

Source code in vllm/model_executor/models/phi4_multimodal.py
def get_mm_mapping(self) -> MultiModelKeys:
    """
    Get the module prefix in multimodal models
    """
    return MultiModelKeys.from_string_field(
        language_model="language_model.",
        connector=[
            "img_projection", "vision_speech_projection",
            "speech_projection"
        ],
        tower_model=["image_embed", "audio_embed"],
    )

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> Optional[MultiModalEmbeddings]
Source code in vllm/model_executor/models/phi4_multimodal.py
def get_multimodal_embeddings(
        self, **kwargs: object) -> Optional[MultiModalEmbeddings]:

    modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
    if not modalities:
        return None

    # The result multimodal_embeddings is tuple of tensors, with each
    # tensor correspoending to a multimodal data item (image or video).
    multimodal_embeddings: tuple[torch.Tensor, ...] = ()

    # NOTE: It is important to iterate over the keys in this dictionary
    # to preserve the order of the modalities.
    audio_projection_mode = 'speech'
    for modality in modalities:
        # make sure process images first
        if modality == "images":
            audio_projection_mode = "vision"
            image_input = modalities["images"]
            vision_embeddings = self._process_image_input(image_input)
            multimodal_embeddings += tuple(vision_embeddings)
        if modality == "audios":
            audio_input = modalities["audios"]
            audio_embeddings = self._process_audio_input(
                audio_input, audio_projection_mode=audio_projection_mode)
            multimodal_embeddings += tuple(audio_embeddings)

    return multimodal_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/phi4_multimodal.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("image"):
        return "<|image|>"
    if modality.startswith("audio"):
        return "<|audio|>"

    raise ValueError("Only image or audio modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/phi4_multimodal.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)

_get_padding_size

_get_padding_size(
    orig_width: int,
    orig_height: int,
    target_height: int,
    target_width: int,
)
Source code in vllm/model_executor/models/phi4_multimodal.py
def _get_padding_size(orig_width: int, orig_height: int, target_height: int,
                      target_width: int):
    ratio_width = target_width / orig_width
    ratio_height = target_height / orig_height

    if ratio_width < ratio_height:
        padding_width = 0
        padding_height = target_height - int(orig_height * ratio_width)
    else:
        padding_width = target_width - int(orig_width * ratio_height)
        padding_height = 0
    return padding_height, padding_width

cat_with_pad

cat_with_pad(tensors, dim, padding_value=0)

cat along dim, while pad to max for all other dims

Source code in vllm/model_executor/models/phi4_multimodal.py
def cat_with_pad(tensors, dim, padding_value=0):
    """
    cat along dim, while pad to max for all other dims
    """
    ndim = tensors[0].dim()
    assert all(
        t.dim() == ndim for t in
        tensors[1:]), "All tensors must have the same number of dimensions"

    out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
    out_size[dim] = sum(t.shape[dim] for t in tensors)
    output = tensors[0].new_full(out_size, padding_value)

    index = 0
    for t in tensors:
        # Create a slice list where every dimension except dim is full slice
        slices = [slice(0, t.shape[d]) for d in range(ndim)]
        # Update only the concat dimension slice
        slices[dim] = slice(index, index + t.shape[dim])

        output[slices] = t
        index += t.shape[dim]

    return output