Skip to content

vllm.model_executor.models.qwen3_moe

Inference-only Qwen3MoE model compatible with HuggingFace weights.

logger module-attribute

logger = init_logger(__name__)

Qwen3MoeAttention

Bases: Module

Source code in vllm/model_executor/models/qwen3_moe.py
class Qwen3MoeAttention(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        head_dim: Optional[int] = None,
        rms_norm_eps: float = 1e-06,
        qkv_bias: bool = False,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        dual_chunk_attention_config: Optional[dict[str, Any]] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim or (hidden_size // self.total_num_heads)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings
        self.dual_chunk_attention_config = dual_chunk_attention_config

        self.qkv_proj = QKVParallelLinear(hidden_size,
                                          self.head_dim,
                                          self.total_num_heads,
                                          self.total_num_kv_heads,
                                          bias=qkv_bias,
                                          quant_config=quant_config,
                                          prefix=f"{prefix}.qkv_proj")

        self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                        hidden_size,
                                        bias=False,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.o_proj")

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            dual_chunk_attention_config=dual_chunk_attention_config,
        )
        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.attn",
            **{
                "layer_idx": extract_layer_index(prefix),
                "dual_chunk_attention_config": dual_chunk_attention_config,
            } if dual_chunk_attention_config else {},
        )

        self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
        self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        # Add qk-norm
        q_by_head = q.view(*q.shape[:-1], q.shape[-1] // self.head_dim,
                           self.head_dim)
        q_by_head = self.q_norm(q_by_head)
        q = q_by_head.view(q.shape)

        k_by_head = k.view(*k.shape[:-1], k.shape[-1] // self.head_dim,
                           self.head_dim)
        k_by_head = self.k_norm(k_by_head)
        k = k_by_head.view(k.shape)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
    **(
        {
            "layer_idx": extract_layer_index(prefix),
            "dual_chunk_attention_config": dual_chunk_attention_config,
        }
        if dual_chunk_attention_config
        else {}
    ),
)

dual_chunk_attention_config instance-attribute

dual_chunk_attention_config = dual_chunk_attention_config

head_dim instance-attribute

head_dim = head_dim or hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

k_norm instance-attribute

k_norm = RMSNorm(head_dim, eps=rms_norm_eps)

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_norm instance-attribute

q_norm = RMSNorm(head_dim, eps=rms_norm_eps)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    total_num_kv_heads,
    bias=qkv_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
    rope_scaling=rope_scaling,
    dual_chunk_attention_config=dual_chunk_attention_config,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_kv_heads

__init__

__init__(
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    head_dim: Optional[int] = None,
    rms_norm_eps: float = 1e-06,
    qkv_bias: bool = False,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    dual_chunk_attention_config: Optional[
        dict[str, Any]
    ] = None,
) -> None
Source code in vllm/model_executor/models/qwen3_moe.py
def __init__(
    self,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    head_dim: Optional[int] = None,
    rms_norm_eps: float = 1e-06,
    qkv_bias: bool = False,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    dual_chunk_attention_config: Optional[dict[str, Any]] = None,
) -> None:
    super().__init__()
    self.hidden_size = hidden_size
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = num_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    self.total_num_kv_heads = num_kv_heads
    if self.total_num_kv_heads >= tp_size:
        # Number of KV heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_kv_heads % tp_size == 0
    else:
        # Number of KV heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    self.head_dim = head_dim or (hidden_size // self.total_num_heads)
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5
    self.rope_theta = rope_theta
    self.max_position_embeddings = max_position_embeddings
    self.dual_chunk_attention_config = dual_chunk_attention_config

    self.qkv_proj = QKVParallelLinear(hidden_size,
                                      self.head_dim,
                                      self.total_num_heads,
                                      self.total_num_kv_heads,
                                      bias=qkv_bias,
                                      quant_config=quant_config,
                                      prefix=f"{prefix}.qkv_proj")

    self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
                                    hidden_size,
                                    bias=False,
                                    quant_config=quant_config,
                                    prefix=f"{prefix}.o_proj")

    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=max_position_embeddings,
        base=rope_theta,
        rope_scaling=rope_scaling,
        dual_chunk_attention_config=dual_chunk_attention_config,
    )
    self.attn = Attention(
        self.num_heads,
        self.head_dim,
        self.scaling,
        num_kv_heads=self.num_kv_heads,
        cache_config=cache_config,
        quant_config=quant_config,
        prefix=f"{prefix}.attn",
        **{
            "layer_idx": extract_layer_index(prefix),
            "dual_chunk_attention_config": dual_chunk_attention_config,
        } if dual_chunk_attention_config else {},
    )

    self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
    self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/qwen3_moe.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    # Add qk-norm
    q_by_head = q.view(*q.shape[:-1], q.shape[-1] // self.head_dim,
                       self.head_dim)
    q_by_head = self.q_norm(q_by_head)
    q = q_by_head.view(q.shape)

    k_by_head = k.view(*k.shape[:-1], k.shape[-1] // self.head_dim,
                       self.head_dim)
    k_by_head = self.k_norm(k_by_head)
    k = k_by_head.view(k.shape)
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

Qwen3MoeDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/qwen3_moe.py
class Qwen3MoeDecoderLayer(nn.Module):

    def __init__(
        self,
        config: Qwen3MoeConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        enable_eplb: bool = False,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        dual_chunk_attention_config = getattr(config,
                                              "dual_chunk_attention_config",
                                              None)
        self.self_attn = Qwen3MoeAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            rms_norm_eps=config.rms_norm_eps,
            qkv_bias=getattr(config, 'attention_bias', False),
            head_dim=getattr(config, 'head_dim', None),
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
            dual_chunk_attention_config=dual_chunk_attention_config,
        )

        # `mlp_only_layers` in the config.
        layer_idx = extract_layer_index(prefix)
        mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
                           config.mlp_only_layers)
        if (layer_idx not in mlp_only_layers) and (
                config.num_experts > 0 and
            (layer_idx + 1) % config.decoder_sparse_step == 0):
            self.mlp = Qwen3MoeSparseMoeBlock(config=config,
                                              quant_config=quant_config,
                                              prefix=f"{prefix}.mlp",
                                              enable_eplb=enable_eplb)
        else:
            self.mlp = Qwen3MoeMLP(hidden_size=config.hidden_size,
                                   intermediate_size=config.intermediate_size,
                                   hidden_act=config.hidden_act,
                                   quant_config=quant_config,
                                   prefix=f"{prefix}.mlp")
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

mlp instance-attribute

mlp = Qwen3MoeSparseMoeBlock(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
    enable_eplb=enable_eplb,
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

self_attn instance-attribute

self_attn = Qwen3MoeAttention(
    hidden_size=hidden_size,
    num_heads=num_attention_heads,
    num_kv_heads=num_key_value_heads,
    rope_theta=rope_theta,
    rope_scaling=rope_scaling,
    max_position_embeddings=max_position_embeddings,
    rms_norm_eps=rms_norm_eps,
    qkv_bias=getattr(config, "attention_bias", False),
    head_dim=getattr(config, "head_dim", None),
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
    dual_chunk_attention_config=dual_chunk_attention_config,
)

__init__

__init__(
    config: Qwen3MoeConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
) -> None
Source code in vllm/model_executor/models/qwen3_moe.py
def __init__(
    self,
    config: Qwen3MoeConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
) -> None:
    super().__init__()
    self.hidden_size = config.hidden_size
    rope_theta = getattr(config, "rope_theta", 10000)
    rope_scaling = getattr(config, "rope_scaling", None)
    max_position_embeddings = getattr(config, "max_position_embeddings",
                                      8192)
    dual_chunk_attention_config = getattr(config,
                                          "dual_chunk_attention_config",
                                          None)
    self.self_attn = Qwen3MoeAttention(
        hidden_size=self.hidden_size,
        num_heads=config.num_attention_heads,
        num_kv_heads=config.num_key_value_heads,
        rope_theta=rope_theta,
        rope_scaling=rope_scaling,
        max_position_embeddings=max_position_embeddings,
        rms_norm_eps=config.rms_norm_eps,
        qkv_bias=getattr(config, 'attention_bias', False),
        head_dim=getattr(config, 'head_dim', None),
        cache_config=cache_config,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
        dual_chunk_attention_config=dual_chunk_attention_config,
    )

    # `mlp_only_layers` in the config.
    layer_idx = extract_layer_index(prefix)
    mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
                       config.mlp_only_layers)
    if (layer_idx not in mlp_only_layers) and (
            config.num_experts > 0 and
        (layer_idx + 1) % config.decoder_sparse_step == 0):
        self.mlp = Qwen3MoeSparseMoeBlock(config=config,
                                          quant_config=quant_config,
                                          prefix=f"{prefix}.mlp",
                                          enable_eplb=enable_eplb)
    else:
        self.mlp = Qwen3MoeMLP(hidden_size=config.hidden_size,
                               intermediate_size=config.intermediate_size,
                               hidden_act=config.hidden_act,
                               quant_config=quant_config,
                               prefix=f"{prefix}.mlp")
    self.input_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)
    self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                            eps=config.rms_norm_eps)

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/qwen3_moe.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
    # Self Attention
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(
            hidden_states, residual)
    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
    )

    # Fully Connected
    hidden_states, residual = self.post_attention_layernorm(
        hidden_states, residual)
    hidden_states = self.mlp(hidden_states)
    return hidden_states, residual

Qwen3MoeForCausalLM

Bases: Module, SupportsPP, SupportsLoRA, MixtureOfExperts

Source code in vllm/model_executor/models/qwen3_moe.py
class Qwen3MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA,
                          MixtureOfExperts):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    fall_back_to_pt_during_load = False

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        self.quant_config = quant_config
        self.model = Qwen3MoeModel(vllm_config=vllm_config,
                                   prefix=maybe_prefix(prefix, "model"))
        self.lm_head = ParallelLMHead(config.vocab_size,
                                      config.hidden_size,
                                      quant_config=quant_config)
        if self.config.tie_word_embeddings:
            self.lm_head.weight = self.model.embed_tokens.weight
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

        # Set MoE hyperparameters
        self.expert_weights = []

        self.moe_layers: list[FusedMoE] = []
        example_layer = None
        for layer in self.model.layers:
            if isinstance(layer, PPMissingLayer):
                continue

            assert isinstance(layer, Qwen3MoeDecoderLayer)
            if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
                example_layer = layer.mlp
                self.moe_layers.append(layer.mlp.experts)

        if example_layer is None:
            raise RuntimeError("No Qwen3MoE layer found in the model.layers.")

        self.num_moe_layers = len(self.moe_layers)
        self.num_expert_groups = 1
        self.num_shared_experts = 0
        self.num_logical_experts = example_layer.n_logical_experts
        self.num_physical_experts = example_layer.n_physical_experts
        self.num_local_physical_experts = example_layer.n_local_physical_experts
        self.num_routed_experts = example_layer.n_routed_experts
        self.num_redundant_experts = example_layer.n_redundant_experts

    def set_eplb_state(
        self,
        expert_load_view: torch.Tensor,
        logical_to_physical_map: torch.Tensor,
        logical_replica_count: torch.Tensor,
    ) -> None:
        for layer_idx, layer in enumerate(self.moe_layers):
            # Register the expert weights.
            self.expert_weights.append(layer.get_expert_weights())
            layer.set_eplb_state(
                moe_layer_idx=layer_idx,
                expert_load_view=expert_load_view,
                logical_to_physical_map=logical_to_physical_map,
                logical_replica_count=logical_replica_count,
            )

    def update_physical_experts_metadata(
        self,
        num_physical_experts: int,
        num_local_physical_experts: int,
    ) -> None:
        assert self.num_local_physical_experts == num_local_physical_experts
        self.num_physical_experts = num_physical_experts
        self.num_local_physical_experts = num_local_physical_experts
        self.num_redundant_experts = (num_physical_experts -
                                      self.num_logical_experts)
        for layer in self.model.layers:
            if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
                moe = layer.mlp
                moe.n_local_physical_experts = num_local_physical_experts
                moe.n_physical_experts = num_physical_experts
                moe.n_redundant_experts = self.num_redundant_experts
                moe.experts.update_expert_map()

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, intermediate_tensors,
                                   inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

    def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
        return self.model.get_expert_mapping()

config instance-attribute

config = config

expert_weights instance-attribute

expert_weights = []

fall_back_to_pt_during_load class-attribute instance-attribute

fall_back_to_pt_during_load = False

lm_head instance-attribute

lm_head = ParallelLMHead(
    vocab_size, hidden_size, quant_config=quant_config
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = Qwen3MoeModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

moe_layers instance-attribute

moe_layers: list[FusedMoE] = []

num_expert_groups instance-attribute

num_expert_groups = 1

num_local_physical_experts instance-attribute

num_local_physical_experts = n_local_physical_experts

num_logical_experts instance-attribute

num_logical_experts = n_logical_experts

num_moe_layers instance-attribute

num_moe_layers = len(moe_layers)

num_physical_experts instance-attribute

num_physical_experts = n_physical_experts

num_redundant_experts instance-attribute

num_redundant_experts = n_redundant_experts

num_routed_experts instance-attribute

num_routed_experts = n_routed_experts

num_shared_experts instance-attribute

num_shared_experts = 0

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen3_moe.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config
    self.quant_config = quant_config
    self.model = Qwen3MoeModel(vllm_config=vllm_config,
                               prefix=maybe_prefix(prefix, "model"))
    self.lm_head = ParallelLMHead(config.vocab_size,
                                  config.hidden_size,
                                  quant_config=quant_config)
    if self.config.tie_word_embeddings:
        self.lm_head.weight = self.model.embed_tokens.weight
    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

    # Set MoE hyperparameters
    self.expert_weights = []

    self.moe_layers: list[FusedMoE] = []
    example_layer = None
    for layer in self.model.layers:
        if isinstance(layer, PPMissingLayer):
            continue

        assert isinstance(layer, Qwen3MoeDecoderLayer)
        if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
            example_layer = layer.mlp
            self.moe_layers.append(layer.mlp.experts)

    if example_layer is None:
        raise RuntimeError("No Qwen3MoE layer found in the model.layers.")

    self.num_moe_layers = len(self.moe_layers)
    self.num_expert_groups = 1
    self.num_shared_experts = 0
    self.num_logical_experts = example_layer.n_logical_experts
    self.num_physical_experts = example_layer.n_physical_experts
    self.num_local_physical_experts = example_layer.n_local_physical_experts
    self.num_routed_experts = example_layer.n_routed_experts
    self.num_redundant_experts = example_layer.n_redundant_experts

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/qwen3_moe.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
    sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/qwen3_moe.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.model(input_ids, positions, intermediate_tensors,
                               inputs_embeds)
    return hidden_states

get_expert_mapping

get_expert_mapping() -> list[tuple[str, str, int, str]]
Source code in vllm/model_executor/models/qwen3_moe.py
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
    return self.model.get_expert_mapping()

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/qwen3_moe.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/qwen3_moe.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

set_eplb_state

set_eplb_state(
    expert_load_view: Tensor,
    logical_to_physical_map: Tensor,
    logical_replica_count: Tensor,
) -> None
Source code in vllm/model_executor/models/qwen3_moe.py
def set_eplb_state(
    self,
    expert_load_view: torch.Tensor,
    logical_to_physical_map: torch.Tensor,
    logical_replica_count: torch.Tensor,
) -> None:
    for layer_idx, layer in enumerate(self.moe_layers):
        # Register the expert weights.
        self.expert_weights.append(layer.get_expert_weights())
        layer.set_eplb_state(
            moe_layer_idx=layer_idx,
            expert_load_view=expert_load_view,
            logical_to_physical_map=logical_to_physical_map,
            logical_replica_count=logical_replica_count,
        )

update_physical_experts_metadata

update_physical_experts_metadata(
    num_physical_experts: int,
    num_local_physical_experts: int,
) -> None
Source code in vllm/model_executor/models/qwen3_moe.py
def update_physical_experts_metadata(
    self,
    num_physical_experts: int,
    num_local_physical_experts: int,
) -> None:
    assert self.num_local_physical_experts == num_local_physical_experts
    self.num_physical_experts = num_physical_experts
    self.num_local_physical_experts = num_local_physical_experts
    self.num_redundant_experts = (num_physical_experts -
                                  self.num_logical_experts)
    for layer in self.model.layers:
        if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
            moe = layer.mlp
            moe.n_local_physical_experts = num_local_physical_experts
            moe.n_physical_experts = num_physical_experts
            moe.n_redundant_experts = self.num_redundant_experts
            moe.experts.update_expert_map()

Qwen3MoeMLP

Bases: Module

Source code in vllm/model_executor/models/qwen3_moe.py
class Qwen3MoeMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj")
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=False,
                                           quant_config=quant_config,
                                           reduce_results=reduce_results,
                                           prefix=f"{prefix}.down_proj")
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    reduce_results=reduce_results,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_up_proj",
)

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    reduce_results: bool = True,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen3_moe.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    reduce_results: bool = True,
    prefix: str = "",
) -> None:
    super().__init__()
    self.gate_up_proj = MergedColumnParallelLinear(
        hidden_size, [intermediate_size] * 2,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.gate_up_proj")
    self.down_proj = RowParallelLinear(intermediate_size,
                                       hidden_size,
                                       bias=False,
                                       quant_config=quant_config,
                                       reduce_results=reduce_results,
                                       prefix=f"{prefix}.down_proj")
    if hidden_act != "silu":
        raise ValueError(f"Unsupported activation: {hidden_act}. "
                         "Only silu is supported for now.")
    self.act_fn = SiluAndMul()

forward

forward(x)
Source code in vllm/model_executor/models/qwen3_moe.py
def forward(self, x):
    gate_up, _ = self.gate_up_proj(x)
    x = self.act_fn(gate_up)
    x, _ = self.down_proj(x)
    return x

Qwen3MoeModel

Bases: Module

Source code in vllm/model_executor/models/qwen3_moe.py
@support_torch_compile
class Qwen3MoeModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        parallel_config = vllm_config.parallel_config
        enable_eplb = parallel_config.enable_eplb
        eplb_config = parallel_config.eplb_config
        self.num_redundant_experts = eplb_config.num_redundant_experts

        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.config = config
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=f"{prefix}.embed_tokens")
        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: Qwen3MoeDecoderLayer(config=config,
                                                cache_config=cache_config,
                                                quant_config=quant_config,
                                                prefix=prefix,
                                                enable_eplb=enable_eplb),
            prefix=f"{prefix}.layers",
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]
        for i in range(self.start_layer, self.end_layer):
            layer = self.layers[i]
            hidden_states, residual = layer(positions, hidden_states, residual)
        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

    def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        return FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.num_experts,
            num_redundant_experts=self.num_redundant_experts)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Skip loading extra parameters for GPTQ/modelopt models.
        ignore_suffixes = (".bias", "_bias", ".k_scale", "_k_scale",
                           ".v_scale", "_v_scale", ".weight_scale",
                           "_weight_scale", ".input_scale", "_input_scale")

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        expert_params_mapping = self.get_expert_mapping()
        for name, loaded_weight in weights:
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if "mlp.experts" in name:
                    continue
                name = name.replace(weight_name, param_name)

                # Skip loading extra parameters for GPTQ/modelopt models.
                if name.endswith(ignore_suffixes) and name not in params_dict:
                    continue

                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                if name.endswith("scale"):
                    # Remapping the name of FP8 kv-scale.
                    name = maybe_remap_kv_scale_name(name, params_dict)
                    if name is None:
                        continue
                if name not in params_dict:
                    continue

                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                if weight_loader == default_weight_loader:
                    weight_loader(param, loaded_weight)
                else:
                    weight_loader(param, loaded_weight, shard_id)
                break
            else:
                is_expert_weight = False
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue

                    # Anyway, this is an expert weight and should not be
                    # attempted to load as other weights later
                    is_expert_weight = True

                    # Do not modify `name` since the loop may continue here
                    # Instead, create a new variable
                    name_mapped = name.replace(weight_name, param_name)

                    if is_pp_missing_parameter(name_mapped, self):
                        continue

                    # Skip loading extra parameters for GPTQ/modelopt models.
                    if name_mapped.endswith(
                            ignore_suffixes
                    ) and name_mapped not in params_dict:
                        continue

                    param = params_dict[name_mapped]
                    # We should ask the weight loader to return success or not
                    # here since otherwise we may skip experts with other
                    # available replicas.
                    weight_loader = typing.cast(Callable[..., bool],
                                                param.weight_loader)
                    success = weight_loader(param,
                                            loaded_weight,
                                            name_mapped,
                                            shard_id=shard_id,
                                            expert_id=expert_id,
                                            return_success=True)
                    if success:
                        name = name_mapped
                        break
                else:
                    if is_expert_weight:
                        # We've checked that this is an expert weight
                        # However it's not mapped locally to this rank
                        # So we simply skip it
                        continue

                    # Skip loading extra parameters for GPTQ/modelopt models.
                    if name.endswith(
                            ignore_suffixes) and name not in params_dict:
                        continue
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue
                    # Remapping the name of FP8 kv-scale.
                    if name.endswith("kv_scale"):
                        remapped_kv_scale_name = name.replace(
                            ".kv_scale", ".attn.kv_scale")
                        if remapped_kv_scale_name not in params_dict:
                            logger.warning_once(
                                "Found kv scale in the checkpoint (e.g. %s), but not found the expected name in the model (e.g. %s). kv-scale is not loaded.",  # noqa: E501
                                name,
                                remapped_kv_scale_name,
                            )
                            continue
                        else:
                            name = remapped_kv_scale_name
                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size,
    hidden_size,
    quant_config=quant_config,
    prefix=f"{prefix}.embed_tokens",
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

num_redundant_experts instance-attribute

num_redundant_experts = num_redundant_experts

padding_idx instance-attribute

padding_idx = pad_token_id

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen3_moe.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    parallel_config = vllm_config.parallel_config
    enable_eplb = parallel_config.enable_eplb
    eplb_config = parallel_config.eplb_config
    self.num_redundant_experts = eplb_config.num_redundant_experts

    self.padding_idx = config.pad_token_id
    self.vocab_size = config.vocab_size
    self.config = config
    self.embed_tokens = VocabParallelEmbedding(
        config.vocab_size,
        config.hidden_size,
        quant_config=quant_config,
        prefix=f"{prefix}.embed_tokens")
    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: Qwen3MoeDecoderLayer(config=config,
                                            cache_config=cache_config,
                                            quant_config=quant_config,
                                            prefix=prefix,
                                            enable_eplb=enable_eplb),
        prefix=f"{prefix}.layers",
    )
    self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size))

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/qwen3_moe.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]
    for i in range(self.start_layer, self.end_layer):
        layer = self.layers[i]
        hidden_states, residual = layer(positions, hidden_states, residual)
    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual
        })
    hidden_states, _ = self.norm(hidden_states, residual)
    return hidden_states

get_expert_mapping

get_expert_mapping() -> list[tuple[str, str, int, str]]
Source code in vllm/model_executor/models/qwen3_moe.py
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
    # Params for weights, fp8 weight scales, fp8 activation scales
    # (param_name, weight_name, expert_id, shard_id)
    return FusedMoE.make_expert_params_mapping(
        ckpt_gate_proj_name="gate_proj",
        ckpt_down_proj_name="down_proj",
        ckpt_up_proj_name="up_proj",
        num_experts=self.config.num_experts,
        num_redundant_experts=self.num_redundant_experts)

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/qwen3_moe.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/qwen3_moe.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
    ]

    # Skip loading extra parameters for GPTQ/modelopt models.
    ignore_suffixes = (".bias", "_bias", ".k_scale", "_k_scale",
                       ".v_scale", "_v_scale", ".weight_scale",
                       "_weight_scale", ".input_scale", "_input_scale")

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    expert_params_mapping = self.get_expert_mapping()
    for name, loaded_weight in weights:
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            # Skip non-stacked layers and experts (experts handled below).
            if weight_name not in name:
                continue
            # We have mlp.experts[0].gate_proj in the checkpoint.
            # Since we handle the experts below in expert_params_mapping,
            # we need to skip here BEFORE we update the name, otherwise
            # name will be updated to mlp.experts[0].gate_up_proj, which
            # will then be updated below in expert_params_mapping
            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
            if "mlp.experts" in name:
                continue
            name = name.replace(weight_name, param_name)

            # Skip loading extra parameters for GPTQ/modelopt models.
            if name.endswith(ignore_suffixes) and name not in params_dict:
                continue

            # Skip layers on other devices.
            if is_pp_missing_parameter(name, self):
                continue
            if name.endswith("scale"):
                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
            if name not in params_dict:
                continue

            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            if weight_loader == default_weight_loader:
                weight_loader(param, loaded_weight)
            else:
                weight_loader(param, loaded_weight, shard_id)
            break
        else:
            is_expert_weight = False
            for mapping in expert_params_mapping:
                param_name, weight_name, expert_id, shard_id = mapping
                if weight_name not in name:
                    continue

                # Anyway, this is an expert weight and should not be
                # attempted to load as other weights later
                is_expert_weight = True

                # Do not modify `name` since the loop may continue here
                # Instead, create a new variable
                name_mapped = name.replace(weight_name, param_name)

                if is_pp_missing_parameter(name_mapped, self):
                    continue

                # Skip loading extra parameters for GPTQ/modelopt models.
                if name_mapped.endswith(
                        ignore_suffixes
                ) and name_mapped not in params_dict:
                    continue

                param = params_dict[name_mapped]
                # We should ask the weight loader to return success or not
                # here since otherwise we may skip experts with other
                # available replicas.
                weight_loader = typing.cast(Callable[..., bool],
                                            param.weight_loader)
                success = weight_loader(param,
                                        loaded_weight,
                                        name_mapped,
                                        shard_id=shard_id,
                                        expert_id=expert_id,
                                        return_success=True)
                if success:
                    name = name_mapped
                    break
            else:
                if is_expert_weight:
                    # We've checked that this is an expert weight
                    # However it's not mapped locally to this rank
                    # So we simply skip it
                    continue

                # Skip loading extra parameters for GPTQ/modelopt models.
                if name.endswith(
                        ignore_suffixes) and name not in params_dict:
                    continue
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                # Remapping the name of FP8 kv-scale.
                if name.endswith("kv_scale"):
                    remapped_kv_scale_name = name.replace(
                        ".kv_scale", ".attn.kv_scale")
                    if remapped_kv_scale_name not in params_dict:
                        logger.warning_once(
                            "Found kv scale in the checkpoint (e.g. %s), but not found the expected name in the model (e.g. %s). kv-scale is not loaded.",  # noqa: E501
                            name,
                            remapped_kv_scale_name,
                        )
                        continue
                    else:
                        name = remapped_kv_scale_name
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

Qwen3MoeSparseMoeBlock

Bases: Module

Source code in vllm/model_executor/models/qwen3_moe.py
class Qwen3MoeSparseMoeBlock(nn.Module):

    def __init__(
        self,
        config: Qwen3MoeConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        enable_eplb: bool = False,
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()

        self.ep_group = get_ep_group().device_group
        self.ep_rank = self.ep_group.rank()
        self.ep_size = self.ep_group.size()
        self.n_routed_experts = config.num_experts

        if self.tp_size > config.num_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.num_experts}.")

        # Load balancing settings.
        vllm_config = get_current_vllm_config()
        eplb_config = vllm_config.parallel_config.eplb_config
        self.enable_eplb = enable_eplb

        self.n_logical_experts = self.n_routed_experts
        self.n_redundant_experts = eplb_config.num_redundant_experts
        self.n_physical_experts = (self.n_logical_experts +
                                   self.n_redundant_experts)
        self.n_local_physical_experts = self.n_physical_experts // self.ep_size

        self.physical_expert_start = (self.ep_rank *
                                      self.n_local_physical_experts)
        self.physical_expert_end = (self.physical_expert_start +
                                    self.n_local_physical_experts)

        self.experts = FusedMoE(num_experts=self.n_routed_experts,
                                top_k=config.num_experts_per_tok,
                                hidden_size=config.hidden_size,
                                intermediate_size=config.moe_intermediate_size,
                                reduce_results=True,
                                renormalize=config.norm_topk_prob,
                                quant_config=quant_config,
                                prefix=f"{prefix}.experts",
                                enable_eplb=self.enable_eplb,
                                num_redundant_experts=self.n_redundant_experts)

        self.gate = ReplicatedLinear(
            config.hidden_size,
            config.num_experts,
            bias=False,
            quant_config=self._maybe_ignore_quant_config(quant_config),
            prefix=f"{prefix}.gate")

    def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
        # GPTQ configs do not have a list of ignored modules, however AutoGPTQ
        # seems to avoid gate quantization.
        # See: https://huggingface.co/Qwen/Qwen3-30B-A3B-GPTQ-Int4
        if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
            return None
        return quant_config

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # NOTE: hidden_states can have either 1D or 2D shape.
        orig_shape = hidden_states.shape
        hidden_dim = hidden_states.shape[-1]
        hidden_states = hidden_states.view(-1, hidden_dim)

        # router_logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)
        final_hidden_states = self.experts(hidden_states=hidden_states,
                                           router_logits=router_logits)

        return final_hidden_states.view(orig_shape)

enable_eplb instance-attribute

enable_eplb = enable_eplb

ep_group instance-attribute

ep_group = device_group

ep_rank instance-attribute

ep_rank = rank()

ep_size instance-attribute

ep_size = size()

experts instance-attribute

experts = FusedMoE(
    num_experts=n_routed_experts,
    top_k=num_experts_per_tok,
    hidden_size=hidden_size,
    intermediate_size=moe_intermediate_size,
    reduce_results=True,
    renormalize=norm_topk_prob,
    quant_config=quant_config,
    prefix=f"{prefix}.experts",
    enable_eplb=enable_eplb,
    num_redundant_experts=n_redundant_experts,
)

gate instance-attribute

gate = ReplicatedLinear(
    hidden_size,
    num_experts,
    bias=False,
    quant_config=_maybe_ignore_quant_config(quant_config),
    prefix=f"{prefix}.gate",
)

n_local_physical_experts instance-attribute

n_local_physical_experts = n_physical_experts // ep_size

n_logical_experts instance-attribute

n_logical_experts = n_routed_experts

n_physical_experts instance-attribute

n_physical_experts = n_logical_experts + n_redundant_experts

n_redundant_experts instance-attribute

n_redundant_experts = num_redundant_experts

n_routed_experts instance-attribute

n_routed_experts = num_experts

physical_expert_end instance-attribute

physical_expert_end = (
    physical_expert_start + n_local_physical_experts
)

physical_expert_start instance-attribute

physical_expert_start = ep_rank * n_local_physical_experts

tp_size instance-attribute

__init__

__init__(
    config: Qwen3MoeConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
)
Source code in vllm/model_executor/models/qwen3_moe.py
def __init__(
    self,
    config: Qwen3MoeConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    enable_eplb: bool = False,
):
    super().__init__()
    self.tp_size = get_tensor_model_parallel_world_size()

    self.ep_group = get_ep_group().device_group
    self.ep_rank = self.ep_group.rank()
    self.ep_size = self.ep_group.size()
    self.n_routed_experts = config.num_experts

    if self.tp_size > config.num_experts:
        raise ValueError(
            f"Tensor parallel size {self.tp_size} is greater than "
            f"the number of experts {config.num_experts}.")

    # Load balancing settings.
    vllm_config = get_current_vllm_config()
    eplb_config = vllm_config.parallel_config.eplb_config
    self.enable_eplb = enable_eplb

    self.n_logical_experts = self.n_routed_experts
    self.n_redundant_experts = eplb_config.num_redundant_experts
    self.n_physical_experts = (self.n_logical_experts +
                               self.n_redundant_experts)
    self.n_local_physical_experts = self.n_physical_experts // self.ep_size

    self.physical_expert_start = (self.ep_rank *
                                  self.n_local_physical_experts)
    self.physical_expert_end = (self.physical_expert_start +
                                self.n_local_physical_experts)

    self.experts = FusedMoE(num_experts=self.n_routed_experts,
                            top_k=config.num_experts_per_tok,
                            hidden_size=config.hidden_size,
                            intermediate_size=config.moe_intermediate_size,
                            reduce_results=True,
                            renormalize=config.norm_topk_prob,
                            quant_config=quant_config,
                            prefix=f"{prefix}.experts",
                            enable_eplb=self.enable_eplb,
                            num_redundant_experts=self.n_redundant_experts)

    self.gate = ReplicatedLinear(
        config.hidden_size,
        config.num_experts,
        bias=False,
        quant_config=self._maybe_ignore_quant_config(quant_config),
        prefix=f"{prefix}.gate")

_maybe_ignore_quant_config

_maybe_ignore_quant_config(
    quant_config: QuantizationConfig,
)
Source code in vllm/model_executor/models/qwen3_moe.py
def _maybe_ignore_quant_config(self, quant_config: QuantizationConfig):
    # GPTQ configs do not have a list of ignored modules, however AutoGPTQ
    # seems to avoid gate quantization.
    # See: https://huggingface.co/Qwen/Qwen3-30B-A3B-GPTQ-Int4
    if isinstance(quant_config, (GPTQConfig, GPTQMarlinConfig)):
        return None
    return quant_config

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/qwen3_moe.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    # NOTE: hidden_states can have either 1D or 2D shape.
    orig_shape = hidden_states.shape
    hidden_dim = hidden_states.shape[-1]
    hidden_states = hidden_states.view(-1, hidden_dim)

    # router_logits: (num_tokens, n_experts)
    router_logits, _ = self.gate(hidden_states)
    final_hidden_states = self.experts(hidden_states=hidden_states,
                                       router_logits=router_logits)

    return final_hidden_states.view(orig_shape)