vllm.model_executor.models.siglip
Implementation of SiglipVisionModel intended to be only used within a vision language model.
SiglipAttention ¶
Bases: Module
Source code in vllm/model_executor/models/siglip.py
out_proj instance-attribute
¶
out_proj = RowParallelLinear(
input_size=embed_dim,
output_size=embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size=embed_dim,
head_size=head_dim,
total_num_heads=num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__ ¶
__init__(
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
forward ¶
Input shape: Batch x Time x Channel
Source code in vllm/model_executor/models/siglip.py
SiglipEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/siglip.py
layers instance-attribute
¶
layers = ModuleList(
[
(
SiglipEncoderLayer(
config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
forward ¶
Source code in vllm/model_executor/models/siglip.py
SiglipEncoderInfo ¶
Bases: VisionEncoderInfo[SiglipVisionConfig]
Source code in vllm/model_executor/models/siglip.py
SiglipEncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/siglip.py
mlp instance-attribute
¶
mlp = SiglipMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self_attn instance-attribute
¶
self_attn = SiglipAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__ ¶
__init__(
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
forward ¶
Source code in vllm/model_executor/models/siglip.py
SiglipMLP ¶
Bases: Module
Source code in vllm/model_executor/models/siglip.py
fc1 instance-attribute
¶
fc1 = ColumnParallelLinear(
hidden_size,
intermediate_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc1",
)
fc2 instance-attribute
¶
fc2 = RowParallelLinear(
intermediate_size,
hidden_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc2",
)
__init__ ¶
__init__(
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
forward ¶
SiglipMultiheadAttentionPoolingHead ¶
Bases: Module
Multihead Attention Pooling.
Source code in vllm/model_executor/models/siglip.py
attention instance-attribute
¶
attention = MultiheadAttention(
hidden_size, num_attention_heads, batch_first=True
)
mlp instance-attribute
¶
mlp = SiglipMLP(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
__init__ ¶
__init__(
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
forward ¶
Source code in vllm/model_executor/models/siglip.py
SiglipVisionEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/siglip.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
patch_embedding instance-attribute
¶
patch_embedding = Conv2d(
in_channels=num_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size,
padding="valid",
)
position_embedding instance-attribute
¶
position_embedding = VocabParallelEmbedding(
num_positions, embed_dim
)
__init__ ¶
Source code in vllm/model_executor/models/siglip.py
forward ¶
Source code in vllm/model_executor/models/siglip.py
interpolate_pos_encoding ¶
This method is an adapted method for SigLIP (due to SigLIP not having class embedding unlike other ViTs) that allows the model to interpolate the pre-trained position encodings such that it can be usable on higher resolution images.
Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
Source code in vllm/model_executor/models/siglip.py
SiglipVisionModel ¶
Bases: Module
Source code in vllm/model_executor/models/siglip.py
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
|
vision_model instance-attribute
¶
vision_model = SiglipVisionTransformer(
config,
quant_config,
num_hidden_layers_override=num_hidden_layers_override,
require_post_norm=require_post_norm,
prefix=f"{prefix}.vision_model",
)
__init__ ¶
__init__(
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
forward ¶
forward(
pixel_values: Tensor,
interpolate_pos_encoding: bool = False,
feature_sample_layers: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
load_weights ¶
Source code in vllm/model_executor/models/siglip.py
SiglipVisionTransformer ¶
Bases: Module
Source code in vllm/model_executor/models/siglip.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
|
encoder instance-attribute
¶
encoder = SiglipEncoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
)
head instance-attribute
¶
head = SiglipMultiheadAttentionPoolingHead(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.head",
)
use_head instance-attribute
¶
use_head = (
True
if not hasattr(config, "vision_use_head")
else vision_use_head
)
__init__ ¶
__init__(
config: SiglipVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
forward ¶
forward(
pixel_values: Tensor,
interpolate_pos_encoding: bool = True,
feature_sample_layers: Optional[list[int]] = None,
) -> Tensor