Skip to content

vllm.model_executor.models.siglip

Implementation of SiglipVisionModel intended to be only used within a vision language model.

SiglipAttention

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipAttention(nn.Module):

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(f"embed_dim must be divisible by num_heads (got "
                             "`embed_dim`: {self.embed_dim} and `num_heads`:"
                             f" {self.num_heads}).")

        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout
        self.qkv_proj = QKVParallelLinear(
            hidden_size=self.embed_dim,
            head_size=self.head_dim,
            total_num_heads=self.num_heads,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )

        self.out_proj = RowParallelLinear(
            input_size=self.embed_dim,
            output_size=self.embed_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.out_proj",
        )

        self.tp_size = get_tensor_model_parallel_world_size()
        self.num_heads_per_partition = divide(self.num_heads, self.tp_size)

        self.attn = MultiHeadAttention(self.num_heads_per_partition,
                                       self.head_dim, self.scale)

    def forward(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        """Input shape: Batch x Time x Channel"""
        qkv_states, _ = self.qkv_proj(hidden_states)
        query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)

        out = self.attn(query_states, key_states, value_states)
        attn_output, _ = self.out_proj(out)

        return attn_output, None

attn instance-attribute

attn = MultiHeadAttention(
    num_heads_per_partition, head_dim, scale
)

config instance-attribute

config = config

dropout instance-attribute

dropout = attention_dropout

embed_dim instance-attribute

embed_dim = hidden_size

head_dim instance-attribute

head_dim = embed_dim // num_heads

num_heads instance-attribute

num_heads = num_attention_heads

num_heads_per_partition instance-attribute

num_heads_per_partition = divide(num_heads, tp_size)

out_proj instance-attribute

out_proj = RowParallelLinear(
    input_size=embed_dim,
    output_size=embed_dim,
    quant_config=quant_config,
    prefix=f"{prefix}.out_proj",
)

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size=embed_dim,
    head_size=head_dim,
    total_num_heads=num_heads,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

scale instance-attribute

scale = head_dim ** -0.5

tp_size instance-attribute

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    self.embed_dim = config.hidden_size
    self.num_heads = config.num_attention_heads
    self.head_dim = self.embed_dim // self.num_heads
    if self.head_dim * self.num_heads != self.embed_dim:
        raise ValueError(f"embed_dim must be divisible by num_heads (got "
                         "`embed_dim`: {self.embed_dim} and `num_heads`:"
                         f" {self.num_heads}).")

    self.scale = self.head_dim**-0.5
    self.dropout = config.attention_dropout
    self.qkv_proj = QKVParallelLinear(
        hidden_size=self.embed_dim,
        head_size=self.head_dim,
        total_num_heads=self.num_heads,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )

    self.out_proj = RowParallelLinear(
        input_size=self.embed_dim,
        output_size=self.embed_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.out_proj",
    )

    self.tp_size = get_tensor_model_parallel_world_size()
    self.num_heads_per_partition = divide(self.num_heads, self.tp_size)

    self.attn = MultiHeadAttention(self.num_heads_per_partition,
                                   self.head_dim, self.scale)

forward

forward(hidden_states: Tensor) -> Tensor

Input shape: Batch x Time x Channel

Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    """Input shape: Batch x Time x Channel"""
    qkv_states, _ = self.qkv_proj(hidden_states)
    query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)

    out = self.attn(query_states, key_states, value_states)
    attn_output, _ = self.out_proj(out)

    return attn_output, None

SiglipEncoder

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipEncoder(nn.Module):

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        num_hidden_layers_override: Optional[int] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config

        if num_hidden_layers_override is None:
            num_hidden_layers = config.num_hidden_layers
        else:
            num_hidden_layers = num_hidden_layers_override

        self.layers = nn.ModuleList([
            SiglipEncoderLayer(config,
                               quant_config=quant_config,
                               prefix=f"{prefix}.layers.{layer_idx}")
            for layer_idx in range(num_hidden_layers)
        ])

    def forward(
        self,
        inputs_embeds: torch.Tensor,
        return_all_hidden_states: bool,
    ) -> Union[torch.Tensor, list[torch.Tensor]]:
        hidden_states_pool = [inputs_embeds]
        hidden_states = inputs_embeds

        for encoder_layer in self.layers:
            hidden_states, _ = encoder_layer(hidden_states)
            if return_all_hidden_states:
                hidden_states_pool.append(hidden_states)
        # If we have multiple feature sample layers, we return all hidden
        # states in order and grab the ones we need by index.
        if return_all_hidden_states:
            return hidden_states_pool
        return hidden_states

config instance-attribute

config = config

layers instance-attribute

layers = ModuleList(
    [
        (
            SiglipEncoderLayer(
                config,
                quant_config=quant_config,
                prefix=f"{prefix}.layers.{layer_idx}",
            )
        )
        for layer_idx in (range(num_hidden_layers))
    ]
)

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    num_hidden_layers_override: Optional[int] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    num_hidden_layers_override: Optional[int] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config

    if num_hidden_layers_override is None:
        num_hidden_layers = config.num_hidden_layers
    else:
        num_hidden_layers = num_hidden_layers_override

    self.layers = nn.ModuleList([
        SiglipEncoderLayer(config,
                           quant_config=quant_config,
                           prefix=f"{prefix}.layers.{layer_idx}")
        for layer_idx in range(num_hidden_layers)
    ])

forward

forward(
    inputs_embeds: Tensor, return_all_hidden_states: bool
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    inputs_embeds: torch.Tensor,
    return_all_hidden_states: bool,
) -> Union[torch.Tensor, list[torch.Tensor]]:
    hidden_states_pool = [inputs_embeds]
    hidden_states = inputs_embeds

    for encoder_layer in self.layers:
        hidden_states, _ = encoder_layer(hidden_states)
        if return_all_hidden_states:
            hidden_states_pool.append(hidden_states)
    # If we have multiple feature sample layers, we return all hidden
    # states in order and grab the ones we need by index.
    if return_all_hidden_states:
        return hidden_states_pool
    return hidden_states

SiglipEncoderInfo

Bases: VisionEncoderInfo[SiglipVisionConfig]

Source code in vllm/model_executor/models/siglip.py
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):

    def get_num_image_tokens(
        self,
        *,
        image_width: int,
        image_height: int,
    ) -> int:
        return self.get_patch_grid_length()**2

    def get_image_size(self) -> int:
        return self.vision_config.image_size

    def get_patch_size(self) -> int:
        return self.vision_config.patch_size

    def get_patch_grid_length(self) -> int:
        image_size, patch_size = self.get_image_size(), self.get_patch_size()
        return image_size // patch_size

get_image_size

get_image_size() -> int
Source code in vllm/model_executor/models/siglip.py
def get_image_size(self) -> int:
    return self.vision_config.image_size

get_num_image_tokens

get_num_image_tokens(
    *, image_width: int, image_height: int
) -> int
Source code in vllm/model_executor/models/siglip.py
def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    return self.get_patch_grid_length()**2

get_patch_grid_length

get_patch_grid_length() -> int
Source code in vllm/model_executor/models/siglip.py
def get_patch_grid_length(self) -> int:
    image_size, patch_size = self.get_image_size(), self.get_patch_size()
    return image_size // patch_size

get_patch_size

get_patch_size() -> int
Source code in vllm/model_executor/models/siglip.py
def get_patch_size(self) -> int:
    return self.vision_config.patch_size

SiglipEncoderLayer

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipEncoderLayer(nn.Module):

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.embed_dim = config.hidden_size

        self.self_attn = SiglipAttention(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )
        self.layer_norm1 = nn.LayerNorm(self.embed_dim,
                                        eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(
            config,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
        self.layer_norm2 = nn.LayerNorm(self.embed_dim,
                                        eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
    ) -> tuple[torch.Tensor, None]:
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, _ = self.self_attn(hidden_states=hidden_states)
        hidden_states += residual

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states += residual

        return hidden_states, None

embed_dim instance-attribute

embed_dim = hidden_size

layer_norm1 instance-attribute

layer_norm1 = LayerNorm(embed_dim, eps=layer_norm_eps)

layer_norm2 instance-attribute

layer_norm2 = LayerNorm(embed_dim, eps=layer_norm_eps)

mlp instance-attribute

mlp = SiglipMLP(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

self_attn instance-attribute

self_attn = SiglipAttention(
    config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.embed_dim = config.hidden_size

    self.self_attn = SiglipAttention(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
    )
    self.layer_norm1 = nn.LayerNorm(self.embed_dim,
                                    eps=config.layer_norm_eps)
    self.mlp = SiglipMLP(
        config,
        quant_config=quant_config,
        prefix=f"{prefix}.mlp",
    )
    self.layer_norm2 = nn.LayerNorm(self.embed_dim,
                                    eps=config.layer_norm_eps)

forward

forward(hidden_states: Tensor) -> tuple[Tensor, None]
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, None]:
    residual = hidden_states

    hidden_states = self.layer_norm1(hidden_states)
    hidden_states, _ = self.self_attn(hidden_states=hidden_states)
    hidden_states += residual

    residual = hidden_states
    hidden_states = self.layer_norm2(hidden_states)
    hidden_states = self.mlp(hidden_states)
    hidden_states += residual

    return hidden_states, None

SiglipMLP

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipMLP(nn.Module):

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        self.activation_fn = get_act_fn(config.hidden_act)
        # Special handling for BNB and torchao quantization
        if quant_config and quant_config.get_name() in [
                "bitsandbytes", "torchao"
        ]:
            quantizable = True
        else:
            # For other quantization, we require the hidden size to be a
            # multiple of 64
            quantizable = (config.hidden_size % 64 == 0
                           and config.intermediate_size % 64 == 0)
        self.fc1 = ColumnParallelLinear(
            config.hidden_size,
            config.intermediate_size,
            quant_config=quant_config if quantizable else None,
            prefix=f"{prefix}.fc1",
        )
        self.fc2 = RowParallelLinear(
            config.intermediate_size,
            config.hidden_size,
            quant_config=quant_config if quantizable else None,
            prefix=f"{prefix}.fc2",
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states, _ = self.fc2(hidden_states)
        return hidden_states

activation_fn instance-attribute

activation_fn = get_act_fn(hidden_act)

config instance-attribute

config = config

fc1 instance-attribute

fc1 = ColumnParallelLinear(
    hidden_size,
    intermediate_size,
    quant_config=quant_config if quantizable else None,
    prefix=f"{prefix}.fc1",
)

fc2 instance-attribute

fc2 = RowParallelLinear(
    intermediate_size,
    hidden_size,
    quant_config=quant_config if quantizable else None,
    prefix=f"{prefix}.fc2",
)

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    self.activation_fn = get_act_fn(config.hidden_act)
    # Special handling for BNB and torchao quantization
    if quant_config and quant_config.get_name() in [
            "bitsandbytes", "torchao"
    ]:
        quantizable = True
    else:
        # For other quantization, we require the hidden size to be a
        # multiple of 64
        quantizable = (config.hidden_size % 64 == 0
                       and config.intermediate_size % 64 == 0)
    self.fc1 = ColumnParallelLinear(
        config.hidden_size,
        config.intermediate_size,
        quant_config=quant_config if quantizable else None,
        prefix=f"{prefix}.fc1",
    )
    self.fc2 = RowParallelLinear(
        config.intermediate_size,
        config.hidden_size,
        quant_config=quant_config if quantizable else None,
        prefix=f"{prefix}.fc2",
    )

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    hidden_states, _ = self.fc1(hidden_states)
    hidden_states = self.activation_fn(hidden_states)
    hidden_states, _ = self.fc2(hidden_states)
    return hidden_states

SiglipMultiheadAttentionPoolingHead

Bases: Module

Multihead Attention Pooling.

Source code in vllm/model_executor/models/siglip.py
class SiglipMultiheadAttentionPoolingHead(nn.Module):
    """Multihead Attention Pooling."""

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
        # TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
        self.attention = torch.nn.MultiheadAttention(
            config.hidden_size, config.num_attention_heads, batch_first=True)
        self.layernorm = nn.LayerNorm(config.hidden_size,
                                      eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(config=config,
                             quant_config=quant_config,
                             prefix=f"{prefix}.mlp")

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        batch_size = hidden_state.shape[0]
        probe = self.probe.repeat(batch_size, 1, 1)

        hidden_state = self.attention(probe, hidden_state, hidden_state)[0]

        residual = hidden_state
        hidden_state = self.layernorm(hidden_state)
        hidden_state = self.mlp(hidden_state)
        hidden_state += residual

        return hidden_state[:, 0]

attention instance-attribute

attention = MultiheadAttention(
    hidden_size, num_attention_heads, batch_first=True
)

layernorm instance-attribute

layernorm = LayerNorm(hidden_size, eps=layer_norm_eps)

mlp instance-attribute

mlp = SiglipMLP(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

probe instance-attribute

probe = Parameter(randn(1, 1, hidden_size))

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
    # TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
    self.attention = torch.nn.MultiheadAttention(
        config.hidden_size, config.num_attention_heads, batch_first=True)
    self.layernorm = nn.LayerNorm(config.hidden_size,
                                  eps=config.layer_norm_eps)
    self.mlp = SiglipMLP(config=config,
                         quant_config=quant_config,
                         prefix=f"{prefix}.mlp")

forward

forward(hidden_state: Tensor) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
    batch_size = hidden_state.shape[0]
    probe = self.probe.repeat(batch_size, 1, 1)

    hidden_state = self.attention(probe, hidden_state, hidden_state)[0]

    residual = hidden_state
    hidden_state = self.layernorm(hidden_state)
    hidden_state = self.mlp(hidden_state)
    hidden_state += residual

    return hidden_state[:, 0]

SiglipVisionEmbeddings

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipVisionEmbeddings(nn.Module):

    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
        )

        self.num_patches = (self.image_size // self.patch_size)**2
        self.num_positions = self.num_patches
        self.position_embedding = VocabParallelEmbedding(
            self.num_positions, self.embed_dim)
        self.register_buffer(
            "position_ids",
            torch.arange(self.num_positions, dtype=torch.int64).expand(
                (1, -1)),
            persistent=False,
        )

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int,
                                 width: int) -> torch.Tensor:
        """
        This method is an adapted method for SigLIP (due to SigLIP not having
        class embedding unlike other ViTs) that allows the model to interpolate
        the pre-trained position encodings such that it can be usable on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """
        position_embeddings = self.position_embedding.weight.unsqueeze(0)
        num_patches = embeddings.shape[1]
        num_positions = position_embeddings.shape[1]
        if num_patches == num_positions and height == width:
            return position_embeddings

        dim = embeddings.shape[-1]
        height = height // self.patch_size
        width = width // self.patch_size
        # we add a small number to avoid floating point error
        # in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        height, width = height + 0.1, width + 0.1

        patch_pos_embed = position_embeddings.reshape(
            1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)),
            dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(
                height / math.sqrt(num_positions),
                width / math.sqrt(num_positions),
            ),
            mode="bicubic",
            align_corners=False,
        )
        if (int(height) != patch_pos_embed.shape[-2]
                or int(width) != patch_pos_embed.shape[-1]):
            raise ValueError("Width or height does not match with "
                             "the interpolated position embeddings")

        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return patch_pos_embed

    def forward(self,
                pixel_values: torch.Tensor,
                interpolate_pos_encoding: bool = False) -> torch.Tensor:
        _, _, height, width = pixel_values.shape
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(pixel_values.to(
            dtype=target_dtype))  # shape = [*, width, grid, grid]
        embeddings = patch_embeds.flatten(2).transpose(1, 2)

        if interpolate_pos_encoding:
            embeddings += self.interpolate_pos_encoding(
                embeddings, height, width)
        else:
            embeddings += self.position_embedding(self.position_ids)
        return embeddings

config instance-attribute

config = config

embed_dim instance-attribute

embed_dim = hidden_size

image_size instance-attribute

image_size = image_size

num_patches instance-attribute

num_patches = (image_size // patch_size) ** 2

num_positions instance-attribute

num_positions = num_patches

patch_embedding instance-attribute

patch_embedding = Conv2d(
    in_channels=num_channels,
    out_channels=embed_dim,
    kernel_size=patch_size,
    stride=patch_size,
    padding="valid",
)

patch_size instance-attribute

patch_size = patch_size

position_embedding instance-attribute

position_embedding = VocabParallelEmbedding(
    num_positions, embed_dim
)

__init__

__init__(config: SiglipVisionConfig)
Source code in vllm/model_executor/models/siglip.py
def __init__(self, config: SiglipVisionConfig):
    super().__init__()
    self.config = config
    self.embed_dim = config.hidden_size
    self.image_size = config.image_size
    self.patch_size = config.patch_size

    self.patch_embedding = nn.Conv2d(
        in_channels=config.num_channels,
        out_channels=self.embed_dim,
        kernel_size=self.patch_size,
        stride=self.patch_size,
        padding="valid",
    )

    self.num_patches = (self.image_size // self.patch_size)**2
    self.num_positions = self.num_patches
    self.position_embedding = VocabParallelEmbedding(
        self.num_positions, self.embed_dim)
    self.register_buffer(
        "position_ids",
        torch.arange(self.num_positions, dtype=torch.int64).expand(
            (1, -1)),
        persistent=False,
    )

forward

forward(
    pixel_values: Tensor,
    interpolate_pos_encoding: bool = False,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(self,
            pixel_values: torch.Tensor,
            interpolate_pos_encoding: bool = False) -> torch.Tensor:
    _, _, height, width = pixel_values.shape
    target_dtype = self.patch_embedding.weight.dtype
    patch_embeds = self.patch_embedding(pixel_values.to(
        dtype=target_dtype))  # shape = [*, width, grid, grid]
    embeddings = patch_embeds.flatten(2).transpose(1, 2)

    if interpolate_pos_encoding:
        embeddings += self.interpolate_pos_encoding(
            embeddings, height, width)
    else:
        embeddings += self.position_embedding(self.position_ids)
    return embeddings

interpolate_pos_encoding

interpolate_pos_encoding(
    embeddings: Tensor, height: int, width: int
) -> Tensor

This method is an adapted method for SigLIP (due to SigLIP not having class embedding unlike other ViTs) that allows the model to interpolate the pre-trained position encodings such that it can be usable on higher resolution images.

Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174

Source code in vllm/model_executor/models/siglip.py
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int,
                             width: int) -> torch.Tensor:
    """
    This method is an adapted method for SigLIP (due to SigLIP not having
    class embedding unlike other ViTs) that allows the model to interpolate
    the pre-trained position encodings such that it can be usable on higher
    resolution images.

    Source:
    https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
    """
    position_embeddings = self.position_embedding.weight.unsqueeze(0)
    num_patches = embeddings.shape[1]
    num_positions = position_embeddings.shape[1]
    if num_patches == num_positions and height == width:
        return position_embeddings

    dim = embeddings.shape[-1]
    height = height // self.patch_size
    width = width // self.patch_size
    # we add a small number to avoid floating point error
    # in the interpolation
    # see discussion at https://github.com/facebookresearch/dino/issues/8
    height, width = height + 0.1, width + 0.1

    patch_pos_embed = position_embeddings.reshape(
        1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)),
        dim)
    patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
    patch_pos_embed = nn.functional.interpolate(
        patch_pos_embed,
        scale_factor=(
            height / math.sqrt(num_positions),
            width / math.sqrt(num_positions),
        ),
        mode="bicubic",
        align_corners=False,
    )
    if (int(height) != patch_pos_embed.shape[-2]
            or int(width) != patch_pos_embed.shape[-1]):
        raise ValueError("Width or height does not match with "
                         "the interpolated position embeddings")

    patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
    return patch_pos_embed

SiglipVisionModel

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipVisionModel(nn.Module):
    config_class = SiglipVisionConfig
    main_input_name = "pixel_values"

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_hidden_layers_override: Optional[int] = None,
        require_post_norm: Optional[bool] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.vision_model = SiglipVisionTransformer(
            config,
            quant_config,
            num_hidden_layers_override=num_hidden_layers_override,
            require_post_norm=require_post_norm,
            prefix=f"{prefix}.vision_model",
        )

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    def forward(
        self,
        pixel_values: torch.Tensor,
        interpolate_pos_encoding: bool = False,
        feature_sample_layers: Optional[list[int]] = None,
    ) -> torch.Tensor:
        return self.vision_model(
            pixel_values=pixel_values,
            interpolate_pos_encoding=interpolate_pos_encoding,
            feature_sample_layers=feature_sample_layers,
        )

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        layer_count = len(self.vision_model.encoder.layers)

        for name, loaded_weight in weights:
            # post_layernorm is optional in SiglipVisionModel
            if (name.startswith("vision_model.post_layernorm")
                    and self.vision_model.post_layernorm is None):
                continue

            # omit layers when num_hidden_layers_override is set
            if name.startswith("vision_model.encoder.layers"):
                layer_idx = int(name.split(".")[3])
                if layer_idx >= layer_count:
                    continue

            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        return loaded_params

config_class class-attribute instance-attribute

config_class = SiglipVisionConfig

main_input_name class-attribute instance-attribute

main_input_name = 'pixel_values'

vision_model instance-attribute

vision_model = SiglipVisionTransformer(
    config,
    quant_config,
    num_hidden_layers_override=num_hidden_layers_override,
    require_post_norm=require_post_norm,
    prefix=f"{prefix}.vision_model",
)

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.vision_model = SiglipVisionTransformer(
        config,
        quant_config,
        num_hidden_layers_override=num_hidden_layers_override,
        require_post_norm=require_post_norm,
        prefix=f"{prefix}.vision_model",
    )

forward

forward(
    pixel_values: Tensor,
    interpolate_pos_encoding: bool = False,
    feature_sample_layers: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    pixel_values: torch.Tensor,
    interpolate_pos_encoding: bool = False,
    feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:
    return self.vision_model(
        pixel_values=pixel_values,
        interpolate_pos_encoding=interpolate_pos_encoding,
        feature_sample_layers=feature_sample_layers,
    )

get_input_embeddings

get_input_embeddings() -> Module
Source code in vllm/model_executor/models/siglip.py
def get_input_embeddings(self) -> nn.Module:
    return self.vision_model.embeddings.patch_embedding

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/siglip.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("qkv_proj", "q_proj", "q"),
        ("qkv_proj", "k_proj", "k"),
        ("qkv_proj", "v_proj", "v"),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    layer_count = len(self.vision_model.encoder.layers)

    for name, loaded_weight in weights:
        # post_layernorm is optional in SiglipVisionModel
        if (name.startswith("vision_model.post_layernorm")
                and self.vision_model.post_layernorm is None):
            continue

        # omit layers when num_hidden_layers_override is set
        if name.startswith("vision_model.encoder.layers"):
            layer_idx = int(name.split(".")[3])
            if layer_idx >= layer_count:
                continue

        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            name = name.replace(weight_name, param_name)

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            param = params_dict[name]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, loaded_weight)
        loaded_params.add(name)
    return loaded_params

SiglipVisionTransformer

Bases: Module

Source code in vllm/model_executor/models/siglip.py
class SiglipVisionTransformer(nn.Module):

    def __init__(
        self,
        config: SiglipVisionConfig,
        quant_config: Optional[QuantizationConfig] = None,
        *,
        num_hidden_layers_override: Optional[int] = None,
        require_post_norm: Optional[bool] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = SiglipVisionEmbeddings(config)

        self.encoder = SiglipEncoder(
            config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers_override,
            prefix=f"{prefix}.encoder",
        )

        num_hidden_layers = config.num_hidden_layers
        if len(self.encoder.layers) > config.num_hidden_layers:
            raise ValueError(
                f"The original encoder only has {num_hidden_layers} "
                f"layers, but you requested {len(self.encoder.layers)} layers."
            )

        # If possible, skip post_layernorm to conserve memory
        if require_post_norm is None:
            require_post_norm = len(self.encoder.layers) == num_hidden_layers

        if require_post_norm:
            self.post_layernorm = nn.LayerNorm(embed_dim,
                                               eps=config.layer_norm_eps)
        else:
            self.post_layernorm = None

        self.use_head = (True if not hasattr(config, "vision_use_head") else
                         config.vision_use_head)
        if self.use_head:
            self.head = SiglipMultiheadAttentionPoolingHead(
                config=config,
                quant_config=quant_config,
                prefix=f"{prefix}.head",
            )

    def forward(
        self,
        pixel_values: torch.Tensor,
        interpolate_pos_encoding: bool = True,
        feature_sample_layers: Optional[list[int]] = None,
    ) -> torch.Tensor:

        hidden_states = self.embeddings(
            pixel_values,
            interpolate_pos_encoding=interpolate_pos_encoding,
        )

        return_all_hidden_states = feature_sample_layers is not None

        # Produces either the last layer output or all of the hidden states,
        # depending on if we have feature_sample_layers or not
        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            return_all_hidden_states=return_all_hidden_states,
        )

        # Handle post-norm (if applicable) and stacks feature layers if needed
        encoder_outputs = resolve_visual_encoder_outputs(
            encoder_outputs, feature_sample_layers, self.post_layernorm,
            self.config.num_hidden_layers)

        # TODO: add this back when pooled_output is used in inference.
        # if self.use_head:
        # pooled_output = self.head(encoder_outputs)

        return encoder_outputs

config instance-attribute

config = config

embeddings instance-attribute

embeddings = SiglipVisionEmbeddings(config)

encoder instance-attribute

encoder = SiglipEncoder(
    config,
    quant_config=quant_config,
    num_hidden_layers_override=num_hidden_layers_override,
    prefix=f"{prefix}.encoder",
)

head instance-attribute

head = SiglipMultiheadAttentionPoolingHead(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.head",
)

post_layernorm instance-attribute

post_layernorm = LayerNorm(embed_dim, eps=layer_norm_eps)

use_head instance-attribute

use_head = (
    True
    if not hasattr(config, "vision_use_head")
    else vision_use_head
)

__init__

__init__(
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/siglip.py
def __init__(
    self,
    config: SiglipVisionConfig,
    quant_config: Optional[QuantizationConfig] = None,
    *,
    num_hidden_layers_override: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> None:
    super().__init__()

    self.config = config
    embed_dim = config.hidden_size

    self.embeddings = SiglipVisionEmbeddings(config)

    self.encoder = SiglipEncoder(
        config,
        quant_config=quant_config,
        num_hidden_layers_override=num_hidden_layers_override,
        prefix=f"{prefix}.encoder",
    )

    num_hidden_layers = config.num_hidden_layers
    if len(self.encoder.layers) > config.num_hidden_layers:
        raise ValueError(
            f"The original encoder only has {num_hidden_layers} "
            f"layers, but you requested {len(self.encoder.layers)} layers."
        )

    # If possible, skip post_layernorm to conserve memory
    if require_post_norm is None:
        require_post_norm = len(self.encoder.layers) == num_hidden_layers

    if require_post_norm:
        self.post_layernorm = nn.LayerNorm(embed_dim,
                                           eps=config.layer_norm_eps)
    else:
        self.post_layernorm = None

    self.use_head = (True if not hasattr(config, "vision_use_head") else
                     config.vision_use_head)
    if self.use_head:
        self.head = SiglipMultiheadAttentionPoolingHead(
            config=config,
            quant_config=quant_config,
            prefix=f"{prefix}.head",
        )

forward

forward(
    pixel_values: Tensor,
    interpolate_pos_encoding: bool = True,
    feature_sample_layers: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/siglip.py
def forward(
    self,
    pixel_values: torch.Tensor,
    interpolate_pos_encoding: bool = True,
    feature_sample_layers: Optional[list[int]] = None,
) -> torch.Tensor:

    hidden_states = self.embeddings(
        pixel_values,
        interpolate_pos_encoding=interpolate_pos_encoding,
    )

    return_all_hidden_states = feature_sample_layers is not None

    # Produces either the last layer output or all of the hidden states,
    # depending on if we have feature_sample_layers or not
    encoder_outputs = self.encoder(
        inputs_embeds=hidden_states,
        return_all_hidden_states=return_all_hidden_states,
    )

    # Handle post-norm (if applicable) and stacks feature layers if needed
    encoder_outputs = resolve_visual_encoder_outputs(
        encoder_outputs, feature_sample_layers, self.post_layernorm,
        self.config.num_hidden_layers)

    # TODO: add this back when pooled_output is used in inference.
    # if self.use_head:
    # pooled_output = self.head(encoder_outputs)

    return encoder_outputs