vllm.model_executor.models.starcoder2
PyTorch Starcoder2 model.
Starcoder2Attention ¶
Bases: Module
Source code in vllm/model_executor/models/starcoder2.py
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
o_proj instance-attribute
¶
o_proj = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=use_bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=use_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
rotary_emb instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position_embeddings,
base=int(rope_theta),
is_neox_style=True,
)
__init__ ¶
__init__(
config: Starcoder2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/starcoder2.py
forward ¶
Source code in vllm/model_executor/models/starcoder2.py
Starcoder2DecoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/starcoder2.py
mlp instance-attribute
¶
mlp = Starcoder2MLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
post_attention_layernorm instance-attribute
¶
post_attention_layernorm = LayerNorm(
hidden_size, eps=norm_epsilon
)
self_attn instance-attribute
¶
self_attn = Starcoder2Attention(
config,
cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__ ¶
__init__(
config: Starcoder2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/starcoder2.py
forward ¶
Source code in vllm/model_executor/models/starcoder2.py
Starcoder2ForCausalLM ¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/starcoder2.py
logits_processor instance-attribute
¶
logits_processor = LogitsProcessor(
unpadded_vocab_size, vocab_size
)
make_empty_intermediate_tensors instance-attribute
¶
model instance-attribute
¶
model = Starcoder2Model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/starcoder2.py
compute_logits ¶
compute_logits(
hidden_states: Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[Tensor]
Source code in vllm/model_executor/models/starcoder2.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/starcoder2.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/starcoder2.py
Starcoder2MLP ¶
Bases: Module
Source code in vllm/model_executor/models/starcoder2.py
c_fc instance-attribute
¶
c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=use_bias,
quant_config=quant_config,
prefix=f"{prefix}.c_fc",
)
c_proj instance-attribute
¶
c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=use_bias,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
__init__ ¶
__init__(
config: Starcoder2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/starcoder2.py
forward ¶
Starcoder2Model ¶
Bases: Module
Source code in vllm/model_executor/models/starcoder2.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
|
embed_tokens instance-attribute
¶
embed_tokens = VocabParallelEmbedding(
vocab_size,
hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens",
)
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], hidden_size
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/starcoder2.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]