Skip to content

vllm.model_executor.models.step3_text

Inference-only Jurassic model.

logger module-attribute

logger = init_logger(__name__)

FusedMoEBlock

Bases: Module

Source code in vllm/model_executor/models/step3_text.py
class FusedMoEBlock(nn.Module):

    def __init__(self,
                 config: ModelConfig,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = ""):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()

        if self.tp_size > config.moe_num_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.moe_num_experts}.")

        self.experts = FusedMoE(num_experts=config.moe_num_experts,
                                top_k=config.moe_top_k,
                                hidden_size=config.hidden_size,
                                intermediate_size=config.moe_intermediate_size,
                                reduce_results=False,
                                renormalize=config.norm_expert_weight,
                                quant_config=quant_config,
                                prefix=f"{prefix}.experts")
        self.gate = ReplicatedLinear(config.hidden_size,
                                     config.moe_num_experts,
                                     bias=False,
                                     quant_config=None,
                                     prefix=f"{prefix}.gate")

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_shape = hidden_states.shape
        hidden_dim = hidden_states.shape[-1]
        hidden_states = hidden_states.view(-1, hidden_dim)

        router_logits, _ = self.gate(hidden_states)

        final_hidden_states = self.experts(hidden_states=hidden_states,
                                           router_logits=router_logits)
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(
                final_hidden_states)

        return final_hidden_states.view(orig_shape)

experts instance-attribute

experts = FusedMoE(
    num_experts=moe_num_experts,
    top_k=moe_top_k,
    hidden_size=hidden_size,
    intermediate_size=moe_intermediate_size,
    reduce_results=False,
    renormalize=norm_expert_weight,
    quant_config=quant_config,
    prefix=f"{prefix}.experts",
)

gate instance-attribute

gate = ReplicatedLinear(
    hidden_size,
    moe_num_experts,
    bias=False,
    quant_config=None,
    prefix=f"{prefix}.gate",
)

tp_size instance-attribute

__init__

__init__(
    config: ModelConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/step3_text.py
def __init__(self,
             config: ModelConfig,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = ""):
    super().__init__()
    self.tp_size = get_tensor_model_parallel_world_size()

    if self.tp_size > config.moe_num_experts:
        raise ValueError(
            f"Tensor parallel size {self.tp_size} is greater than "
            f"the number of experts {config.moe_num_experts}.")

    self.experts = FusedMoE(num_experts=config.moe_num_experts,
                            top_k=config.moe_top_k,
                            hidden_size=config.hidden_size,
                            intermediate_size=config.moe_intermediate_size,
                            reduce_results=False,
                            renormalize=config.norm_expert_weight,
                            quant_config=quant_config,
                            prefix=f"{prefix}.experts")
    self.gate = ReplicatedLinear(config.hidden_size,
                                 config.moe_num_experts,
                                 bias=False,
                                 quant_config=None,
                                 prefix=f"{prefix}.gate")

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/step3_text.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    orig_shape = hidden_states.shape
    hidden_dim = hidden_states.shape[-1]
    hidden_states = hidden_states.view(-1, hidden_dim)

    router_logits, _ = self.gate(hidden_states)

    final_hidden_states = self.experts(hidden_states=hidden_states,
                                       router_logits=router_logits)
    if self.tp_size > 1:
        final_hidden_states = tensor_model_parallel_all_reduce(
            final_hidden_states)

    return final_hidden_states.view(orig_shape)

Step3TextAttention

Bases: Module

Source code in vllm/model_executor/models/step3_text.py
class Step3TextAttention(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        norm_eps: float,
        rope_theta: int,
        share_q_dim: Optional[int] = None,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embedding: int = 8192,
        head_dim: int = 256,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()

        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size

        if num_kv_heads != 1:
            raise ValueError(f"Step3TextAttention num_kv_heads must be 1, "
                             f"but got {num_kv_heads}.")
        self.num_kv_heads = num_kv_heads

        self.head_dim = head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.q_size = share_q_dim if share_q_dim else self.head_dim

        self.qkv_proj = ReplicatedLinear(
            hidden_size,
            self.q_size + self.kv_size * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )

        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )
        self.inter_norm = RMSNorm(self.q_size, eps=norm_eps)
        self.wq = ColumnParallelLinear(
            self.q_size,
            self.head_dim * self.total_num_heads,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.wq",
        )
        self.rotary_emb = get_rope(self.head_dim,
                                   rotary_dim=self.head_dim,
                                   max_position=max_position_embedding,
                                   base=rope_theta,
                                   rope_scaling=rope_scaling)
        scaling = self.head_dim**-0.5
        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              scaling,
                              self.num_kv_heads,
                              cache_config=cache_config,
                              prefix=f"{prefix}.attn")

    def forward(self, positions: torch.Tensor,
                hidden_states: torch.Tensor) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q = self.inter_norm(q)
        q = self.wq(q)[0]
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        residual, _ = self.o_proj(attn_output)
        return residual

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads,
    cache_config=cache_config,
    prefix=f"{prefix}.attn",
)

head_dim instance-attribute

head_dim = head_dim

hidden_size instance-attribute

hidden_size = hidden_size

inter_norm instance-attribute

inter_norm = RMSNorm(q_size, eps=norm_eps)

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = num_kv_heads

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_size instance-attribute

q_size = share_q_dim if share_q_dim else head_dim

qkv_proj instance-attribute

qkv_proj = ReplicatedLinear(
    hidden_size,
    q_size + kv_size * 2,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position_embedding,
    base=rope_theta,
    rope_scaling=rope_scaling,
)

total_num_heads instance-attribute

total_num_heads = num_heads

wq instance-attribute

wq = ColumnParallelLinear(
    q_size,
    head_dim * total_num_heads,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.wq",
)

__init__

__init__(
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    norm_eps: float,
    rope_theta: int,
    share_q_dim: Optional[int] = None,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embedding: int = 8192,
    head_dim: int = 256,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/step3_text.py
def __init__(
    self,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    norm_eps: float,
    rope_theta: int,
    share_q_dim: Optional[int] = None,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embedding: int = 8192,
    head_dim: int = 256,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.hidden_size = hidden_size
    tp_size = get_tensor_model_parallel_world_size()

    self.total_num_heads = num_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size

    if num_kv_heads != 1:
        raise ValueError(f"Step3TextAttention num_kv_heads must be 1, "
                         f"but got {num_kv_heads}.")
    self.num_kv_heads = num_kv_heads

    self.head_dim = head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.q_size = share_q_dim if share_q_dim else self.head_dim

    self.qkv_proj = ReplicatedLinear(
        hidden_size,
        self.q_size + self.kv_size * 2,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )

    self.o_proj = RowParallelLinear(
        self.total_num_heads * self.head_dim,
        hidden_size,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.o_proj",
    )
    self.inter_norm = RMSNorm(self.q_size, eps=norm_eps)
    self.wq = ColumnParallelLinear(
        self.q_size,
        self.head_dim * self.total_num_heads,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.wq",
    )
    self.rotary_emb = get_rope(self.head_dim,
                               rotary_dim=self.head_dim,
                               max_position=max_position_embedding,
                               base=rope_theta,
                               rope_scaling=rope_scaling)
    scaling = self.head_dim**-0.5
    self.attn = Attention(self.num_heads,
                          self.head_dim,
                          scaling,
                          self.num_kv_heads,
                          cache_config=cache_config,
                          prefix=f"{prefix}.attn")

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/step3_text.py
def forward(self, positions: torch.Tensor,
            hidden_states: torch.Tensor) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    q = self.inter_norm(q)
    q = self.wq(q)[0]
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    residual, _ = self.o_proj(attn_output)
    return residual

Step3TextDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/step3_text.py
class Step3TextDecoderLayer(nn.Module):

    def __init__(self,
                 config: ModelConfig,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = "") -> None:
        super().__init__()
        config = config.hf_config
        self.hidden_size = config.hidden_size
        rope_scaling = getattr(config, "rope_scaling", None)

        self.self_attn = Step3TextAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=1,
            cache_config=cache_config,
            quant_config=quant_config,
            norm_eps=config.rms_norm_eps,
            max_position_embedding=config.max_position_embedding,
            head_dim=config.head_dim,
            share_q_dim=config.share_q_dim,
            rope_theta=config.rope_theta,
            rope_scaling=rope_scaling,
            prefix=f"{prefix}.self_attn")

        layer_idx = int(prefix.split("layers.")[1].split(".")[0])
        moe_layers_enum = getattr(config, "moe_layers_enum", None)
        if moe_layers_enum is not None:
            moe_layers_idx = [
                int(i) for i in moe_layers_enum.strip().split(',')
            ]
        else:
            # Default to 1dense.
            moe_layers_idx = [i for i in range(1, config.num_hidden_layers)]

        if layer_idx in moe_layers_idx:
            self.moe = FusedMoEBlock(config=config,
                                     quant_config=quant_config,
                                     prefix=f"{prefix}.moe")
            self.share_expert = Step3TextMLP(
                hidden_size=self.hidden_size,
                intermediate_size=config.share_expert_dim,
                hidden_act="silu",
                quant_config=quant_config,
                prefix=f"{prefix}.share_expert")
            self.use_moe = True
        else:
            self.mlp = Step3TextMLP(hidden_size=config.hidden_size,
                                    intermediate_size=config.intermediate_size,
                                    hidden_act="silu",
                                    quant_config=quant_config,
                                    prefix=f"{prefix}.mlp")
            self.use_moe = False
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
            self, positions: torch.Tensor, hidden_states: torch.Tensor,
            residual: Optional[torch.Tensor]
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)

        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )

        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)

        if self.use_moe:
            share_output = self.share_expert(hidden_states)
            moe_output = self.moe(hidden_states)
            hidden_states = share_output + moe_output
        else:
            hidden_states = self.mlp(hidden_states)

        return hidden_states, residual

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

mlp instance-attribute

mlp = Step3TextMLP(
    hidden_size=hidden_size,
    intermediate_size=intermediate_size,
    hidden_act="silu",
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

moe instance-attribute

moe = FusedMoEBlock(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.moe",
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

self_attn instance-attribute

self_attn = Step3TextAttention(
    hidden_size=hidden_size,
    num_heads=num_attention_heads,
    num_kv_heads=1,
    cache_config=cache_config,
    quant_config=quant_config,
    norm_eps=rms_norm_eps,
    max_position_embedding=max_position_embedding,
    head_dim=head_dim,
    share_q_dim=share_q_dim,
    rope_theta=rope_theta,
    rope_scaling=rope_scaling,
    prefix=f"{prefix}.self_attn",
)

share_expert instance-attribute

share_expert = Step3TextMLP(
    hidden_size=hidden_size,
    intermediate_size=share_expert_dim,
    hidden_act="silu",
    quant_config=quant_config,
    prefix=f"{prefix}.share_expert",
)

use_moe instance-attribute

use_moe = True

__init__

__init__(
    config: ModelConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/step3_text.py
def __init__(self,
             config: ModelConfig,
             cache_config: Optional[CacheConfig] = None,
             quant_config: Optional[QuantizationConfig] = None,
             prefix: str = "") -> None:
    super().__init__()
    config = config.hf_config
    self.hidden_size = config.hidden_size
    rope_scaling = getattr(config, "rope_scaling", None)

    self.self_attn = Step3TextAttention(
        hidden_size=self.hidden_size,
        num_heads=config.num_attention_heads,
        num_kv_heads=1,
        cache_config=cache_config,
        quant_config=quant_config,
        norm_eps=config.rms_norm_eps,
        max_position_embedding=config.max_position_embedding,
        head_dim=config.head_dim,
        share_q_dim=config.share_q_dim,
        rope_theta=config.rope_theta,
        rope_scaling=rope_scaling,
        prefix=f"{prefix}.self_attn")

    layer_idx = int(prefix.split("layers.")[1].split(".")[0])
    moe_layers_enum = getattr(config, "moe_layers_enum", None)
    if moe_layers_enum is not None:
        moe_layers_idx = [
            int(i) for i in moe_layers_enum.strip().split(',')
        ]
    else:
        # Default to 1dense.
        moe_layers_idx = [i for i in range(1, config.num_hidden_layers)]

    if layer_idx in moe_layers_idx:
        self.moe = FusedMoEBlock(config=config,
                                 quant_config=quant_config,
                                 prefix=f"{prefix}.moe")
        self.share_expert = Step3TextMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.share_expert_dim,
            hidden_act="silu",
            quant_config=quant_config,
            prefix=f"{prefix}.share_expert")
        self.use_moe = True
    else:
        self.mlp = Step3TextMLP(hidden_size=config.hidden_size,
                                intermediate_size=config.intermediate_size,
                                hidden_act="silu",
                                quant_config=quant_config,
                                prefix=f"{prefix}.mlp")
        self.use_moe = False
    self.input_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)
    self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                            eps=config.rms_norm_eps)

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/step3_text.py
def forward(
        self, positions: torch.Tensor, hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor]
) -> tuple[torch.Tensor, torch.Tensor]:
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(
            hidden_states, residual)

    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
    )

    hidden_states, residual = self.post_attention_layernorm(
        hidden_states, residual)

    if self.use_moe:
        share_output = self.share_expert(hidden_states)
        moe_output = self.moe(hidden_states)
        hidden_states = share_output + moe_output
    else:
        hidden_states = self.mlp(hidden_states)

    return hidden_states, residual

Step3TextForCausalLM

Bases: Module, SupportsPP

Source code in vllm/model_executor/models/step3_text.py
class Step3TextForCausalLM(nn.Module, SupportsPP):

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
    ):
        super().__init__()
        config = vllm_config.model_config.hf_config
        lora_config = vllm_config.lora_config
        self.config = config
        self.vllm_config = vllm_config

        self.model = Step3TextModel(vllm_config=vllm_config, prefix=prefix)

        if get_pp_group().is_last_rank:
            self.unpadded_vocab_size = config.vocab_size
            if lora_config:
                self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
            self.lm_head = ParallelLMHead(
                self.unpadded_vocab_size,
                config.hidden_size,
                org_num_embeddings=config.vocab_size,
                padding_size=DEFAULT_VOCAB_PADDING_SIZE
                if not lora_config else lora_config.lora_vocab_padding_size,
            )
            self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                    config.vocab_size)
            self.sampler = get_sampler()
        else:
            self.lm_head = PPMissingLayer()

        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def forward(self,
                input_ids: torch.Tensor,
                positions: torch.Tensor,
                intermediate_tensors: Optional[IntermediateTensors] = None,
                inputs_embeds: Optional[torch.Tensor] = None):
        hidden_states = self.model(input_ids, positions, intermediate_tensors,
                                   inputs_embeds)
        return hidden_states

    def compute_logits(self, hidden_states: torch.Tensor,
                       sampling_metadata: SamplingMetadata) -> torch.Tensor:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def sample(
        self,
        logits: Optional[torch.Tensor],
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(logits, sampling_metadata)
        return next_tokens

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        qkv_params_mapping = [
            # (param_name, shard_name, relative_start_idx, relative_end_idx)
            (".qkv_proj", ".q_proj", 0, self.config.share_q_dim /
             (self.config.share_q_dim + self.config.head_dim * 2)),
            (".qkv_proj", ".k_proj", self.config.share_q_dim /
             (self.config.share_q_dim + self.config.head_dim * 2),
             (self.config.share_q_dim + self.config.head_dim) /
             (self.config.share_q_dim + self.config.head_dim * 2)),
            (".qkv_proj", ".v_proj",
             (self.config.share_q_dim + self.config.head_dim) /
             (self.config.share_q_dim + self.config.head_dim * 2),
             (self.config.share_q_dim + self.config.head_dim * 2) /
             (self.config.share_q_dim + self.config.head_dim * 2)),
        ]
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            (".gate_up_proj", ".gate_proj", 0),
            (".gate_up_proj", ".up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()

        expert_params_mapping = [
            (".moe.experts.w13_weight", ".moe.gate_proj.weight", "w1"),
            (".moe.experts.w13_weight", ".moe.up_proj.weight", "w3"),
            (".moe.experts.w2_weight", ".moe.down_proj.weight", "w2")
        ]

        disable_moe_stacked_params = [
            data[1] for data in expert_params_mapping
        ]

        for name, loaded_weight in weights:
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                if any(disable_moe_stacked_param in name
                       for disable_moe_stacked_param in
                       disable_moe_stacked_params):
                    continue
                name = name.replace(weight_name, param_name)
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                loaded_params.add(name)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    # Skip layers on other devices.
                    if is_pp_missing_parameter(name, self):
                        continue
                    # Skip loading extra bias for GPTQ models.
                    if ((name.endswith(".bias") or name.endswith("_bias"))
                            and name not in params_dict):
                        continue
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    for expert_id in range(loaded_weight.shape[0]):
                        loaded_weight_expert = loaded_weight[expert_id]
                        weight_loader(param,
                                      loaded_weight_expert,
                                      name,
                                      shard_id=shard_id,
                                      expert_id=expert_id)
                    loaded_params.add(name)
                    break
                else:
                    for (param_name, weight_name, start_idx,
                         end_idx) in qkv_params_mapping:
                        if weight_name not in name:
                            continue
                        name = name.replace(weight_name, param_name)
                        if is_pp_missing_parameter(name, self):
                            continue
                        param = params_dict[name]
                        dim = param.shape[param.output_dim]
                        begin_idx = int(start_idx * dim)
                        end_idx = int(end_idx * dim)
                        param_slice = param.narrow(param.output_dim, begin_idx,
                                                   end_idx - begin_idx)
                        param_slice.copy_(loaded_weight)
                        loaded_params.add(name)
                        break
                    else:
                        if is_pp_missing_parameter(name, self):
                            continue
                        param = params_dict[name]
                        weight_loader = getattr(param, "weight_loader",
                                                default_weight_loader)
                        weight_loader(param, loaded_weight)
                        loaded_params.add(name)
        return loaded_params

config instance-attribute

config = config

lm_head instance-attribute

lm_head = ParallelLMHead(
    unpadded_vocab_size,
    hidden_size,
    org_num_embeddings=vocab_size,
    padding_size=DEFAULT_VOCAB_PADDING_SIZE
    if not lora_config
    else lora_vocab_padding_size,
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    unpadded_vocab_size, vocab_size
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = Step3TextModel(
    vllm_config=vllm_config, prefix=prefix
)

sampler instance-attribute

sampler = get_sampler()

unpadded_vocab_size instance-attribute

unpadded_vocab_size = vocab_size

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/step3_text.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
):
    super().__init__()
    config = vllm_config.model_config.hf_config
    lora_config = vllm_config.lora_config
    self.config = config
    self.vllm_config = vllm_config

    self.model = Step3TextModel(vllm_config=vllm_config, prefix=prefix)

    if get_pp_group().is_last_rank:
        self.unpadded_vocab_size = config.vocab_size
        if lora_config:
            self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
        self.lm_head = ParallelLMHead(
            self.unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE
            if not lora_config else lora_config.lora_vocab_padding_size,
        )
        self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                config.vocab_size)
        self.sampler = get_sampler()
    else:
        self.lm_head = PPMissingLayer()

    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)

compute_logits

compute_logits(
    hidden_states: Tensor,
    sampling_metadata: SamplingMetadata,
) -> Tensor
Source code in vllm/model_executor/models/step3_text.py
def compute_logits(self, hidden_states: torch.Tensor,
                   sampling_metadata: SamplingMetadata) -> torch.Tensor:
    logits = self.logits_processor(self.lm_head, hidden_states,
                                   sampling_metadata)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
)
Source code in vllm/model_executor/models/step3_text.py
def forward(self,
            input_ids: torch.Tensor,
            positions: torch.Tensor,
            intermediate_tensors: Optional[IntermediateTensors] = None,
            inputs_embeds: Optional[torch.Tensor] = None):
    hidden_states = self.model(input_ids, positions, intermediate_tensors,
                               inputs_embeds)
    return hidden_states

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/step3_text.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    qkv_params_mapping = [
        # (param_name, shard_name, relative_start_idx, relative_end_idx)
        (".qkv_proj", ".q_proj", 0, self.config.share_q_dim /
         (self.config.share_q_dim + self.config.head_dim * 2)),
        (".qkv_proj", ".k_proj", self.config.share_q_dim /
         (self.config.share_q_dim + self.config.head_dim * 2),
         (self.config.share_q_dim + self.config.head_dim) /
         (self.config.share_q_dim + self.config.head_dim * 2)),
        (".qkv_proj", ".v_proj",
         (self.config.share_q_dim + self.config.head_dim) /
         (self.config.share_q_dim + self.config.head_dim * 2),
         (self.config.share_q_dim + self.config.head_dim * 2) /
         (self.config.share_q_dim + self.config.head_dim * 2)),
    ]
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        (".gate_up_proj", ".gate_proj", 0),
        (".gate_up_proj", ".up_proj", 1),
    ]
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()

    expert_params_mapping = [
        (".moe.experts.w13_weight", ".moe.gate_proj.weight", "w1"),
        (".moe.experts.w13_weight", ".moe.up_proj.weight", "w3"),
        (".moe.experts.w2_weight", ".moe.down_proj.weight", "w2")
    ]

    disable_moe_stacked_params = [
        data[1] for data in expert_params_mapping
    ]

    for name, loaded_weight in weights:
        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            if weight_name not in name:
                continue
            if any(disable_moe_stacked_param in name
                   for disable_moe_stacked_param in
                   disable_moe_stacked_params):
                continue
            name = name.replace(weight_name, param_name)
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            loaded_params.add(name)
            break
        else:
            for mapping in expert_params_mapping:
                param_name, weight_name, shard_id = mapping
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip layers on other devices.
                if is_pp_missing_parameter(name, self):
                    continue
                # Skip loading extra bias for GPTQ models.
                if ((name.endswith(".bias") or name.endswith("_bias"))
                        and name not in params_dict):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                for expert_id in range(loaded_weight.shape[0]):
                    loaded_weight_expert = loaded_weight[expert_id]
                    weight_loader(param,
                                  loaded_weight_expert,
                                  name,
                                  shard_id=shard_id,
                                  expert_id=expert_id)
                loaded_params.add(name)
                break
            else:
                for (param_name, weight_name, start_idx,
                     end_idx) in qkv_params_mapping:
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    if is_pp_missing_parameter(name, self):
                        continue
                    param = params_dict[name]
                    dim = param.shape[param.output_dim]
                    begin_idx = int(start_idx * dim)
                    end_idx = int(end_idx * dim)
                    param_slice = param.narrow(param.output_dim, begin_idx,
                                               end_idx - begin_idx)
                    param_slice.copy_(loaded_weight)
                    loaded_params.add(name)
                    break
                else:
                    if is_pp_missing_parameter(name, self):
                        continue
                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)
                    weight_loader(param, loaded_weight)
                    loaded_params.add(name)
    return loaded_params

sample

sample(
    logits: Optional[Tensor],
    sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]
Source code in vllm/model_executor/models/step3_text.py
def sample(
    self,
    logits: Optional[torch.Tensor],
    sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
    next_tokens = self.sampler(logits, sampling_metadata)
    return next_tokens

Step3TextMLP

Bases: Module

Source code in vllm/model_executor/models/step3_text.py
class Step3TextMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj")
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=False,
                                           quant_config=quant_config,
                                           prefix=f"{prefix}.down_proj")
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()
        self.hidden_size = hidden_size

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        gate_up, _ = self.gate_up_proj(hidden_states)
        intermediate_act = self.act_fn(gate_up)
        output, _ = self.down_proj(intermediate_act)
        return output

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_up_proj",
)

hidden_size instance-attribute

hidden_size = hidden_size

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/step3_text.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.gate_up_proj = MergedColumnParallelLinear(
        hidden_size, [intermediate_size] * 2,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.gate_up_proj")
    self.down_proj = RowParallelLinear(intermediate_size,
                                       hidden_size,
                                       bias=False,
                                       quant_config=quant_config,
                                       prefix=f"{prefix}.down_proj")
    if hidden_act != "silu":
        raise ValueError(f"Unsupported activation: {hidden_act}. "
                         "Only silu is supported for now.")
    self.act_fn = SiluAndMul()
    self.hidden_size = hidden_size

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/step3_text.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    gate_up, _ = self.gate_up_proj(hidden_states)
    intermediate_act = self.act_fn(gate_up)
    output, _ = self.down_proj(intermediate_act)
    return output

Step3TextModel

Bases: Module

Source code in vllm/model_executor/models/step3_text.py
@support_torch_compile
class Step3TextModel(nn.Module):

    def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
        super().__init__()
        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        self.vocab_size = config.vocab_size
        self.config = config

        if get_pp_group().is_first_rank or (config.tie_word_embeddings
                                            and get_pp_group().is_last_rank):
            self.embed_tokens = VocabParallelEmbedding(
                self.vocab_size,
                config.hidden_size,
            )
        else:
            self.embed_tokens = PPMissingLayer()

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: Step3TextDecoderLayer(config=vllm_config.
                                                 model_config,
                                                 cache_config=cache_config,
                                                 quant_config=quant_config,
                                                 prefix=prefix),
            prefix=f"{prefix}.layers",
        )
        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()

        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(["hidden_states"],
                                                    config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        for i in range(self.start_layer, self.end_layer):
            layer = self.layers[i]
            hidden_states, residual = layer(positions, hidden_states, residual)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual,
            })

        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(vllm_config: VllmConfig, prefix: str = '') -> None
Source code in vllm/model_executor/models/step3_text.py
def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
    super().__init__()
    config = vllm_config.model_config.hf_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    self.vocab_size = config.vocab_size
    self.config = config

    if get_pp_group().is_first_rank or (config.tie_word_embeddings
                                        and get_pp_group().is_last_rank):
        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
        )
    else:
        self.embed_tokens = PPMissingLayer()

    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: Step3TextDecoderLayer(config=vllm_config.
                                             model_config,
                                             cache_config=cache_config,
                                             quant_config=quant_config,
                                             prefix=prefix),
        prefix=f"{prefix}.layers",
    )
    if get_pp_group().is_last_rank:
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    else:
        self.norm = PPMissingLayer()

    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(["hidden_states"],
                                                config.hidden_size))

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/step3_text.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    for i in range(self.start_layer, self.end_layer):
        layer = self.layers[i]
        hidden_states, residual = layer(positions, hidden_states, residual)

    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual,
        })

    hidden_states, _ = self.norm(hidden_states, residual)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/step3_text.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)