vllm.model_executor.models.swin
SwinAttention ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
output instance-attribute
¶
output = SwinSelfOutput(
config,
dim,
quant_config=quant_config,
prefix=f"{prefix}.output",
)
self instance-attribute
¶
self = SwinSelfAttention(
config,
dim,
num_heads,
window_size,
quant_config=quant_config,
prefix=f"{prefix}.self",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
num_heads: int,
window_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
attention_mask: Optional[FloatTensor] = None,
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/swin.py
SwinEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
layers instance-attribute
¶
layers = ModuleList(
[
(
SwinStage(
config=config,
dim=int(embed_dim * 2**layer_idx),
input_resolution=(
grid_size[0] // 2**layer_idx,
grid_size[1] // 2**layer_idx,
),
depth=depths[layer_idx],
num_heads=num_heads[layer_idx],
drop_path=dpr[
(sum(depths[:layer_idx])) : (
sum(depths[: (layer_idx + 1)])
)
],
downsample=SwinPatchMerging
if layer_idx < num_layers - 1
else None,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
)
)
for layer_idx in (range(num_layers))
]
)
__init__ ¶
__init__(
config: SwinConfig,
grid_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
input_dimensions: tuple[int, int],
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/swin.py
SwinIntermediate ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
dense instance-attribute
¶
dense = ColumnParallelLinear(
dim,
int(mlp_ratio * dim),
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
SwinLayer ¶
Bases: SwinLayer
Source code in vllm/model_executor/models/swin.py
attention instance-attribute
¶
attention = SwinAttention(
config,
dim,
num_heads,
window_size=window_size,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
intermediate instance-attribute
¶
intermediate = SwinIntermediate(
config,
dim,
quant_config=quant_config,
prefix=f"{prefix}.intermediate",
)
output instance-attribute
¶
output = SwinOutput(
config,
dim,
quant_config=quant_config,
prefix=f"{prefix}.output",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
input_resolution: int,
num_heads: int,
drop_path_rate: float = 0.0,
shift_size: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
SwinModel ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
encoder instance-attribute
¶
encoder = SwinEncoder(
config,
patch_grid,
quant_config=quant_config,
prefix=f"{prefix}.encoder",
)
__init__ ¶
__init__(
config: SwinConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
pixel_values: Optional[FloatTensor] = None,
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = None,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/swin.py
load_weights ¶
Source code in vllm/model_executor/models/swin.py
SwinOutput ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
dense instance-attribute
¶
dense = RowParallelLinear(
int(mlp_ratio * dim),
dim,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
SwinSelfAttention ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
qkv instance-attribute
¶
qkv = QKVParallelLinear(
hidden_size=dim,
head_size=attention_head_size,
total_num_heads=num_attention_heads,
bias=qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv",
)
relative_position_bias_table instance-attribute
¶
relative_position_bias_table = Parameter(
zeros(
(2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads,
)
)
relative_position_index instance-attribute
¶
window_size instance-attribute
¶
window_size = (
window_size
if isinstance(window_size, Iterable)
else (window_size, window_size)
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
num_heads: int,
window_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
_get_rel_pos_bias ¶
_get_rel_pos_bias() -> Tensor
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
attention_mask: Optional[FloatTensor] = None,
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> tuple[Tensor, ...]
Source code in vllm/model_executor/models/swin.py
SwinSelfOutput ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
dense instance-attribute
¶
dense = RowParallelLinear(
input_size=dim,
output_size=dim,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
SwinStage ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
blocks instance-attribute
¶
blocks = ModuleList(
[
(
SwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
drop_path_rate=drop_path[layer_idx],
shift_size=0
if layer_idx % 2 == 0
else window_size // 2,
quant_config=quant_config,
prefix=f"{prefix}.blocks.{layer_idx}",
)
)
for layer_idx in (range(depth))
]
)
downsample instance-attribute
¶
downsample = downsample(
input_resolution, dim=dim, norm_layer=LayerNorm
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
input_resolution: int,
depth: int,
num_heads: int,
drop_path: list[float],
downsample: Optional[SwinPatchMerging] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
input_dimensions: tuple[int, int],
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> tuple[Tensor]