Skip to content

vllm.platforms.cuda

Code inside this file can safely assume cuda platform, e.g. importing pynvml. However, it should not initialize cuda context.

CudaPlatform module-attribute

_P module-attribute

_P = ParamSpec('_P')

_R module-attribute

_R = TypeVar('_R')

logger module-attribute

logger = init_logger(__name__)

nvml_available module-attribute

nvml_available = True

pynvml module-attribute

pynvml = import_pynvml()

CudaPlatformBase

Bases: Platform

Source code in vllm/platforms/cuda.py
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
class CudaPlatformBase(Platform):
    _enum = PlatformEnum.CUDA
    device_name: str = "cuda"
    device_type: str = "cuda"
    dispatch_key: str = "CUDA"
    ray_device_key: str = "GPU"
    dist_backend: str = "nccl"
    device_control_env_var: str = "CUDA_VISIBLE_DEVICES"

    @property
    def supported_dtypes(self) -> list[torch.dtype]:
        if self.has_device_capability(80):
            # Ampere and Hopper or later NVIDIA GPUs.
            return [torch.bfloat16, torch.float16, torch.float32]
        elif (not self.has_device_capability(80)
              ) and self.has_device_capability(60):
            # Pascal, Volta and Turing NVIDIA GPUs, BF16 is not supported
            return [torch.float16, torch.float32]
        # Kepler and Maxwell NVIDIA GPUs, only FP32 is supported,
        # though vLLM doesn't support these GPUs.
        return [torch.float32]

    @classmethod
    def set_device(cls, device: torch.device) -> None:
        """
        Set the device for the current platform.
        """
        torch.cuda.set_device(device)
        # With this trick we can force the device to be set eagerly
        # see https://github.com/pytorch/pytorch/issues/155668
        # for why and when it is needed
        _ = torch.zeros(1, device=device)

    @classmethod
    def get_device_capability(cls,
                              device_id: int = 0
                              ) -> Optional[DeviceCapability]:
        raise NotImplementedError

    @classmethod
    def get_device_name(cls, device_id: int = 0) -> str:
        raise NotImplementedError

    @classmethod
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        raise NotImplementedError

    @classmethod
    def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
        if enforce_eager and not envs.VLLM_USE_V1:
            logger.warning(
                "To see benefits of async output processing, enable CUDA "
                "graph. Since, enforce-eager is enabled, async output "
                "processor cannot be used")
            return False
        return True

    @classmethod
    def is_fully_connected(cls, device_ids: list[int]) -> bool:
        raise NotImplementedError

    @classmethod
    def log_warnings(cls):
        pass

    @classmethod
    def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
        parallel_config = vllm_config.parallel_config
        model_config = vllm_config.model_config

        if parallel_config.worker_cls == "auto":
            if vllm_config.speculative_config:
                if not envs.VLLM_USE_V1:
                    raise NotImplementedError(
                        "Speculative decoding is not supported on vLLM V0.")
                parallel_config.worker_cls = "vllm.v1.worker.gpu_worker.Worker"
            else:
                if envs.VLLM_USE_V1:
                    parallel_config.worker_cls = \
                        "vllm.v1.worker.gpu_worker.Worker"
                else:
                    parallel_config.worker_cls = "vllm.worker.worker.Worker"

        cache_config = vllm_config.cache_config
        if cache_config and cache_config.block_size is None:
            cache_config.block_size = 16

        # TODO(lucas): handle this more gracefully
        # Note: model_config may be None during testing
        if model_config is not None and model_config.use_mla:
            # If `VLLM_ATTENTION_BACKEND` is not set and we are using MLA,
            # then we default to FlashMLA backend for non-blackwell GPUs,
            # else we default to CutlassMLA. For each case, we force the
            # required block_size.
            use_flashmla = False
            use_cutlass_mla = False

            if envs.VLLM_ATTENTION_BACKEND is None:
                # Default case
                if cls.is_device_capability(100):
                    # Blackwell => Force CutlassMLA.
                    use_cutlass_mla = True
                    # TODO: This does not work, because the
                    # global_force_attn_backend_context_manager is not set.
                    # See vllm/attention/selector.py:_cached_get_attn_backend
                    envs.VLLM_ATTENTION_BACKEND = "CUTLASS_MLA"
                else:
                    # Not Blackwell
                    use_flashmla = True
            else:
                # Forced case
                use_flashmla = (envs.VLLM_ATTENTION_BACKEND == "FLASHMLA")
                use_cutlass_mla = (
                    envs.VLLM_ATTENTION_BACKEND == "CUTLASS_MLA")

            from vllm.attention.ops.flashmla import is_flashmla_supported
            if use_flashmla and is_flashmla_supported()[0] \
                and cache_config.block_size != 64:
                cache_config.block_size = 64
                logger.info(
                    "Forcing kv cache block size to 64 for FlashMLA backend.")

            if use_cutlass_mla and cache_config.block_size != 128:
                cache_config.block_size = 128
                logger.info("Forcing kv cache block size to 128 for "
                            "CUTLASS_MLA backend.")

        # lazy import to avoid circular import
        from vllm.config import CUDAGraphMode

        compilation_config = vllm_config.compilation_config
        if (envs.VLLM_ALL2ALL_BACKEND == "deepep_high_throughput"
                and parallel_config.data_parallel_size > 1
                and compilation_config.cudagraph_mode != CUDAGraphMode.NONE):
            logger.info(
                "Data Parallel: disabling cudagraphs since DP "
                "with DeepEP high-throughput kernels are not CUDA Graph "
                "compatible. The DeepEP low-latency kernels are CUDA Graph "
                "compatible. Set the all_to_all backend to deepep_low_latency "
                "to use those kernels instead.")
            compilation_config.cudagraph_mode = CUDAGraphMode.NONE
            if model_config is not None:
                model_config.enforce_eager = True

    @classmethod
    def get_current_memory_usage(cls,
                                 device: Optional[torch.types.Device] = None
                                 ) -> float:
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats(device)
        return torch.cuda.max_memory_allocated(device)

    @classmethod
    def get_vit_attn_backend(cls, support_fa: bool = False) -> _Backend:
        if cls.has_device_capability(80) and support_fa:
            from transformers.utils import is_flash_attn_2_available
            if is_flash_attn_2_available():
                return _Backend.FLASH_ATTN
            logger.warning_once(
                "Current `vllm-flash-attn` has a bug inside vision "
                "module, so we use xformers backend instead. You can "
                "run `pip install flash-attn` to use flash-attention "
                "backend.")
        # Fallback for Volta/Turing GPUs or FA not supported
        return _Backend.XFORMERS

    @classmethod
    def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
                             kv_cache_dtype, block_size, use_v1, use_mla,
                             has_sink) -> str:
        if use_mla:
            # TODO(lucas): refactor to be more concise
            #  we should probably consider factoring out V1 here
            if selected_backend == _Backend.CUTLASS_MLA or (
                    cls.is_device_capability(100) and selected_backend is None
                    and block_size == 128):
                if use_v1:
                    logger.info_once("Using Cutlass MLA backend on V1 engine.")
                    return ("vllm.v1.attention.backends.mla."
                            "cutlass_mla.CutlassMLABackend")
                else:
                    logger.warning(
                        "Cutlass MLA backend is only supported on V1 engine")
            if selected_backend == _Backend.TRITON_MLA or block_size != 64:
                if use_v1:
                    logger.info_once("Using Triton MLA backend on V1 engine.")
                    return ("vllm.v1.attention.backends.mla."
                            "triton_mla.TritonMLABackend")
                else:
                    logger.info("Using Triton MLA backend.")
                    return "vllm.attention.backends.triton_mla.TritonMLABackend"
            else:
                from vllm.attention.backends.flashmla import (
                    is_flashmla_supported)
                if not is_flashmla_supported()[0]:
                    logger.warning(
                        "FlashMLA backend is not supported due to %s",
                        is_flashmla_supported()[1])
                elif block_size != 64:
                    logger.warning(
                        "FlashMLA backend is not supported for block size %d"
                        " (currently only supports block size 64).",
                        block_size)
                else:
                    if use_v1:
                        logger.info_once(
                            "Using FlashMLA backend on V1 engine.")
                        return ("vllm.v1.attention.backends.mla."
                                "flashmla.FlashMLABackend")
                    else:
                        logger.info("Using FlashMLA backend.")
                        return ("vllm.attention.backends."
                                "flashmla.FlashMLABackend")
        if use_v1:
            FLASHINFER_V1 = "vllm.v1.attention.backends.flashinfer.FlashInferBackend"  # noqa: E501
            FLEX_ATTENTION_V1 = "vllm.v1.attention.backends.flex_attention.FlexAttentionBackend"  # noqa: E501
            TRITON_ATTN_VLLM_V1 = "vllm.v1.attention.backends.triton_attn.TritonAttentionBackend"  # noqa: E501
            FLASH_ATTN_V1 = "vllm.v1.attention.backends.flash_attn.FlashAttentionBackend"  # noqa: E501
            TREE_ATTN_V1 = "vllm.v1.attention.backends.tree_attn.TreeAttentionBackend"  # noqa: E501
            XFORMERS_V1 = "vllm.v1.attention.backends.xformers.XFormersAttentionBackend"  # noqa: E501

            if selected_backend == _Backend.FLASHINFER:
                logger.info_once("Using FlashInfer backend on V1 engine.")
                if cls.has_device_capability(100):
                    from vllm.v1.attention.backends.utils import (
                        set_kv_cache_layout)
                    set_kv_cache_layout("HND")
                return FLASHINFER_V1
            elif selected_backend == _Backend.FLEX_ATTENTION:
                logger.info_once("Using FlexAttention backend on V1 engine.")
                return FLEX_ATTENTION_V1
            elif selected_backend == _Backend.TRITON_ATTN_VLLM_V1:
                logger.info_once("Using Triton backend on V1 engine.")
                return TRITON_ATTN_VLLM_V1
            elif selected_backend == _Backend.FLASH_ATTN:
                logger.info_once("Using Flash Attention backend on V1 engine.")
                return FLASH_ATTN_V1
            elif selected_backend == _Backend.TREE_ATTN:
                logger.info_once("Using Tree Attention backend on V1 engine.")
                return TREE_ATTN_V1
            elif selected_backend == _Backend.XFORMERS_VLLM_V1:
                logger.info_once("Using XFormers backend on V1 engine.")
                return XFORMERS_V1

            from vllm.attention.selector import is_attn_backend_supported

            # Default backends for V1 engine
            # Prefer FlashInfer for Blackwell GPUs if installed
            if cls.is_device_capability(100):
                if is_default_backend_supported := is_attn_backend_supported(
                        FLASHINFER_V1, head_size, dtype):
                    from vllm.v1.attention.backends.utils import (
                        set_kv_cache_layout)

                    logger.info_once(
                        "Using FlashInfer backend with HND KV cache layout on "
                        "V1 engine by default for Blackwell (SM 10.0) GPUs.")
                    set_kv_cache_layout("HND")

                    return FLASHINFER_V1

                if not is_default_backend_supported.can_import:
                    logger.warning_once(
                        "FlashInfer failed to import for V1 engine on "
                        "Blackwell (SM 10.0) GPUs; it is recommended to "
                        "install FlashInfer for better performance.")

            # FlashAttention is the default for SM 8.0+ GPUs
            if cls.has_device_capability(80):
                if has_sink and not cls.is_device_capability(90):
                    logger.info_once("Using Triton backend on V1 engine.")
                    return TRITON_ATTN_VLLM_V1
                if is_default_backend_supported := is_attn_backend_supported(
                        FLASH_ATTN_V1, head_size, dtype,
                        allow_import_error=False):
                    logger.info_once("Using Flash Attention backend on "
                                     "V1 engine.")
                    return FLASH_ATTN_V1

            # FlexAttention is the default for older GPUs
            else:
                logger.info_once("Using FlexAttention backend on V1 engine.")
                return FLEX_ATTENTION_V1

            assert not is_default_backend_supported

            use_flex_attention_reason = {}
            if not is_default_backend_supported.head_size:
                use_flex_attention_reason["head_size"] = head_size
            if not is_default_backend_supported.dtype:
                use_flex_attention_reason["dtype"] = dtype

            logger.info_once(
                "Using FlexAttention backend for %s on V1 engine.",
                ", ".join(f"{k}={v}"
                          for k, v in use_flex_attention_reason.items()),
            )
            return FLEX_ATTENTION_V1

        # Backends for V0 engine
        if selected_backend == _Backend.XFORMERS:
            logger.info("Using XFormers backend.")
            return "vllm.attention.backends.xformers.XFormersBackend"
        elif selected_backend == _Backend.DUAL_CHUNK_FLASH_ATTN:
            logger.info("Using DualChunkFlashAttention backend.")
            return ("vllm.attention.backends.dual_chunk_flash_attn."
                    "DualChunkFlashAttentionBackend")
        elif selected_backend == _Backend.DIFFERENTIAL_FLASH_ATTN:
            logger.info("Using DifferentialFlashAttention backend.")
            return ("vllm.attention.backends.differential_flash_attn."
                    "DifferentialFlashAttentionBackend")
        elif selected_backend == _Backend.FLASH_ATTN:
            pass
        elif selected_backend:
            raise ValueError(
                f"Invalid attention backend for {cls.device_name}, "
                f"with use_v1: {use_v1} use_mla: {use_mla}")

        target_backend = _Backend.FLASH_ATTN
        if not cls.has_device_capability(80):
            # Volta and Turing NVIDIA GPUs.
            logger.info(
                "Cannot use FlashAttention-2 backend for Volta and Turing "
                "GPUs.")
            target_backend = _Backend.XFORMERS
        elif dtype not in (torch.float16, torch.bfloat16):
            logger.info(
                "Cannot use FlashAttention-2 backend for dtype other than "
                "torch.float16 or torch.bfloat16.")
            target_backend = _Backend.XFORMERS
        elif block_size % 16 != 0:
            logger.info(
                "Cannot use FlashAttention-2 backend for block size not "
                "divisible by 16.")
            target_backend = _Backend.XFORMERS

        # FlashAttn is valid for the model, checking if the package is
        # installed.
        if target_backend == _Backend.FLASH_ATTN:
            try:
                import vllm.vllm_flash_attn  # noqa: F401
                from vllm.attention.backends.flash_attn import (  # noqa: F401
                    FlashAttentionBackend, flash_attn_supports_fp8)

                supported_sizes = \
                    FlashAttentionBackend.get_supported_head_sizes()
                if head_size not in supported_sizes:
                    logger.info(
                        "Cannot use FlashAttention-2 backend for head size %d.",
                        head_size)
                    target_backend = _Backend.XFORMERS
                fp8_kv_cache = (kv_cache_dtype is not None
                                and kv_cache_dtype.startswith("fp8"))
                if (fp8_kv_cache and not flash_attn_supports_fp8()):
                    logger.info(
                        "Cannot use FlashAttention backend for FP8 KV cache.")
                    target_backend = _Backend.XFORMERS
            except ImportError:
                logger.info(
                    "Cannot use FlashAttention-2 backend because the "
                    "vllm.vllm_flash_attn package is not found. "
                    "Make sure that vllm_flash_attn was built and installed "
                    "(on by default).")
                target_backend = _Backend.XFORMERS

        if target_backend == _Backend.XFORMERS:
            logger.info("Using XFormers backend.")
            return "vllm.attention.backends.xformers.XFormersBackend"

        logger.info("Using Flash Attention backend.")
        return "vllm.attention.backends.flash_attn.FlashAttentionBackend"

    @classmethod
    def get_punica_wrapper(cls) -> str:
        return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"

    @classmethod
    def get_device_communicator_cls(cls) -> str:
        return "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator"  # noqa

    @classmethod
    def supports_fp8(cls) -> bool:
        return cls.has_device_capability(89)

    @classmethod
    def supports_v1(cls, model_config: "ModelConfig") -> bool:
        return True

    @classmethod
    def use_custom_allreduce(cls) -> bool:
        return True

    @classmethod
    def get_static_graph_wrapper_cls(cls) -> str:
        return "vllm.compilation.cuda_graph.CUDAGraphWrapper"

    @classmethod
    def stateless_init_device_torch_dist_pg(
        cls,
        backend: str,
        prefix_store: PrefixStore,
        group_rank: int,
        group_size: int,
        timeout: timedelta,
    ) -> ProcessGroup:
        assert is_nccl_available()
        pg: ProcessGroup = ProcessGroup(
            prefix_store,
            group_rank,
            group_size,
        )
        from torch.distributed.distributed_c10d import ProcessGroupNCCL

        backend_options = ProcessGroupNCCL.Options()
        backend_options._timeout = timeout

        backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
                                         backend_options)
        backend_type = ProcessGroup.BackendType.NCCL
        device = torch.device("cuda")
        pg._set_default_backend(backend_type)
        backend_class._set_sequence_number_for_group()

        pg._register_backend(device, backend_type, backend_class)
        return pg

    @classmethod
    def device_count(cls) -> int:
        return cuda_device_count_stateless()

    @classmethod
    def is_kv_cache_dtype_supported(cls, kv_cache_dtype: str,
                                    model_config: "ModelConfig") -> bool:
        fp8_attention = kv_cache_dtype.startswith("fp8")
        attention_backend = envs.VLLM_ATTENTION_BACKEND

        supported = False
        if model_config is not None and model_config.use_mla:
            # Default to CutlassMLA for blackwell,
            # FlashMLA otherwise
            if attention_backend is None:
                if cls.is_device_capability(100):
                    attention_backend = "CUTLASS_MLA"
                else:
                    attention_backend = "FLASHMLA"

            # Only FlashMLA supports fp8
            if attention_backend == "FLASHMLA":
                supported = True
            else:
                supported = (not fp8_attention)
        else:
            # Default to FlashAttention
            if attention_backend is None:
                attention_backend = "FLASH_ATTN_VLLM_V1"

            # All Blackwell backends support fp8
            if cls.is_device_capability(100):
                supported = True
            elif attention_backend == "FLASH_ATTN_VLLM_V1":
                if fp8_attention:
                    from vllm.attention.utils.fa_utils import (
                        flash_attn_supports_fp8)
                    supported = flash_attn_supports_fp8()
                else:
                    supported = True
        return supported

    @classmethod
    def check_if_supports_dtype(cls, torch_dtype: torch.dtype):
        if torch_dtype == torch.bfloat16:  # noqa: SIM102
            if not cls.has_device_capability(80):
                capability = cls.get_device_capability()
                gpu_name = cls.get_device_name()

                if capability is None:
                    compute_str = "does not have a compute capability"
                else:
                    version_str = capability.as_version_str()
                    compute_str = f"has compute capability {version_str}"

                raise ValueError(
                    "Bfloat16 is only supported on GPUs "
                    "with compute capability of at least 8.0. "
                    f"Your {gpu_name} GPU {compute_str}. "
                    "You can use float16 instead by explicitly setting the "
                    "`dtype` flag in CLI, for example: --dtype=half.")

_enum class-attribute instance-attribute

_enum = CUDA

device_control_env_var class-attribute instance-attribute

device_control_env_var: str = 'CUDA_VISIBLE_DEVICES'

device_name class-attribute instance-attribute

device_name: str = 'cuda'

device_type class-attribute instance-attribute

device_type: str = 'cuda'

dispatch_key class-attribute instance-attribute

dispatch_key: str = 'CUDA'

dist_backend class-attribute instance-attribute

dist_backend: str = 'nccl'

ray_device_key class-attribute instance-attribute

ray_device_key: str = 'GPU'

supported_dtypes property

supported_dtypes: list[dtype]

check_and_update_config classmethod

check_and_update_config(vllm_config: VllmConfig) -> None
Source code in vllm/platforms/cuda.py
@classmethod
def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
    parallel_config = vllm_config.parallel_config
    model_config = vllm_config.model_config

    if parallel_config.worker_cls == "auto":
        if vllm_config.speculative_config:
            if not envs.VLLM_USE_V1:
                raise NotImplementedError(
                    "Speculative decoding is not supported on vLLM V0.")
            parallel_config.worker_cls = "vllm.v1.worker.gpu_worker.Worker"
        else:
            if envs.VLLM_USE_V1:
                parallel_config.worker_cls = \
                    "vllm.v1.worker.gpu_worker.Worker"
            else:
                parallel_config.worker_cls = "vllm.worker.worker.Worker"

    cache_config = vllm_config.cache_config
    if cache_config and cache_config.block_size is None:
        cache_config.block_size = 16

    # TODO(lucas): handle this more gracefully
    # Note: model_config may be None during testing
    if model_config is not None and model_config.use_mla:
        # If `VLLM_ATTENTION_BACKEND` is not set and we are using MLA,
        # then we default to FlashMLA backend for non-blackwell GPUs,
        # else we default to CutlassMLA. For each case, we force the
        # required block_size.
        use_flashmla = False
        use_cutlass_mla = False

        if envs.VLLM_ATTENTION_BACKEND is None:
            # Default case
            if cls.is_device_capability(100):
                # Blackwell => Force CutlassMLA.
                use_cutlass_mla = True
                # TODO: This does not work, because the
                # global_force_attn_backend_context_manager is not set.
                # See vllm/attention/selector.py:_cached_get_attn_backend
                envs.VLLM_ATTENTION_BACKEND = "CUTLASS_MLA"
            else:
                # Not Blackwell
                use_flashmla = True
        else:
            # Forced case
            use_flashmla = (envs.VLLM_ATTENTION_BACKEND == "FLASHMLA")
            use_cutlass_mla = (
                envs.VLLM_ATTENTION_BACKEND == "CUTLASS_MLA")

        from vllm.attention.ops.flashmla import is_flashmla_supported
        if use_flashmla and is_flashmla_supported()[0] \
            and cache_config.block_size != 64:
            cache_config.block_size = 64
            logger.info(
                "Forcing kv cache block size to 64 for FlashMLA backend.")

        if use_cutlass_mla and cache_config.block_size != 128:
            cache_config.block_size = 128
            logger.info("Forcing kv cache block size to 128 for "
                        "CUTLASS_MLA backend.")

    # lazy import to avoid circular import
    from vllm.config import CUDAGraphMode

    compilation_config = vllm_config.compilation_config
    if (envs.VLLM_ALL2ALL_BACKEND == "deepep_high_throughput"
            and parallel_config.data_parallel_size > 1
            and compilation_config.cudagraph_mode != CUDAGraphMode.NONE):
        logger.info(
            "Data Parallel: disabling cudagraphs since DP "
            "with DeepEP high-throughput kernels are not CUDA Graph "
            "compatible. The DeepEP low-latency kernels are CUDA Graph "
            "compatible. Set the all_to_all backend to deepep_low_latency "
            "to use those kernels instead.")
        compilation_config.cudagraph_mode = CUDAGraphMode.NONE
        if model_config is not None:
            model_config.enforce_eager = True

check_if_supports_dtype classmethod

check_if_supports_dtype(torch_dtype: dtype)
Source code in vllm/platforms/cuda.py
@classmethod
def check_if_supports_dtype(cls, torch_dtype: torch.dtype):
    if torch_dtype == torch.bfloat16:  # noqa: SIM102
        if not cls.has_device_capability(80):
            capability = cls.get_device_capability()
            gpu_name = cls.get_device_name()

            if capability is None:
                compute_str = "does not have a compute capability"
            else:
                version_str = capability.as_version_str()
                compute_str = f"has compute capability {version_str}"

            raise ValueError(
                "Bfloat16 is only supported on GPUs "
                "with compute capability of at least 8.0. "
                f"Your {gpu_name} GPU {compute_str}. "
                "You can use float16 instead by explicitly setting the "
                "`dtype` flag in CLI, for example: --dtype=half.")

device_count classmethod

device_count() -> int
Source code in vllm/platforms/cuda.py
@classmethod
def device_count(cls) -> int:
    return cuda_device_count_stateless()

get_attn_backend_cls classmethod

get_attn_backend_cls(
    selected_backend,
    head_size,
    dtype,
    kv_cache_dtype,
    block_size,
    use_v1,
    use_mla,
    has_sink,
) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
                         kv_cache_dtype, block_size, use_v1, use_mla,
                         has_sink) -> str:
    if use_mla:
        # TODO(lucas): refactor to be more concise
        #  we should probably consider factoring out V1 here
        if selected_backend == _Backend.CUTLASS_MLA or (
                cls.is_device_capability(100) and selected_backend is None
                and block_size == 128):
            if use_v1:
                logger.info_once("Using Cutlass MLA backend on V1 engine.")
                return ("vllm.v1.attention.backends.mla."
                        "cutlass_mla.CutlassMLABackend")
            else:
                logger.warning(
                    "Cutlass MLA backend is only supported on V1 engine")
        if selected_backend == _Backend.TRITON_MLA or block_size != 64:
            if use_v1:
                logger.info_once("Using Triton MLA backend on V1 engine.")
                return ("vllm.v1.attention.backends.mla."
                        "triton_mla.TritonMLABackend")
            else:
                logger.info("Using Triton MLA backend.")
                return "vllm.attention.backends.triton_mla.TritonMLABackend"
        else:
            from vllm.attention.backends.flashmla import (
                is_flashmla_supported)
            if not is_flashmla_supported()[0]:
                logger.warning(
                    "FlashMLA backend is not supported due to %s",
                    is_flashmla_supported()[1])
            elif block_size != 64:
                logger.warning(
                    "FlashMLA backend is not supported for block size %d"
                    " (currently only supports block size 64).",
                    block_size)
            else:
                if use_v1:
                    logger.info_once(
                        "Using FlashMLA backend on V1 engine.")
                    return ("vllm.v1.attention.backends.mla."
                            "flashmla.FlashMLABackend")
                else:
                    logger.info("Using FlashMLA backend.")
                    return ("vllm.attention.backends."
                            "flashmla.FlashMLABackend")
    if use_v1:
        FLASHINFER_V1 = "vllm.v1.attention.backends.flashinfer.FlashInferBackend"  # noqa: E501
        FLEX_ATTENTION_V1 = "vllm.v1.attention.backends.flex_attention.FlexAttentionBackend"  # noqa: E501
        TRITON_ATTN_VLLM_V1 = "vllm.v1.attention.backends.triton_attn.TritonAttentionBackend"  # noqa: E501
        FLASH_ATTN_V1 = "vllm.v1.attention.backends.flash_attn.FlashAttentionBackend"  # noqa: E501
        TREE_ATTN_V1 = "vllm.v1.attention.backends.tree_attn.TreeAttentionBackend"  # noqa: E501
        XFORMERS_V1 = "vllm.v1.attention.backends.xformers.XFormersAttentionBackend"  # noqa: E501

        if selected_backend == _Backend.FLASHINFER:
            logger.info_once("Using FlashInfer backend on V1 engine.")
            if cls.has_device_capability(100):
                from vllm.v1.attention.backends.utils import (
                    set_kv_cache_layout)
                set_kv_cache_layout("HND")
            return FLASHINFER_V1
        elif selected_backend == _Backend.FLEX_ATTENTION:
            logger.info_once("Using FlexAttention backend on V1 engine.")
            return FLEX_ATTENTION_V1
        elif selected_backend == _Backend.TRITON_ATTN_VLLM_V1:
            logger.info_once("Using Triton backend on V1 engine.")
            return TRITON_ATTN_VLLM_V1
        elif selected_backend == _Backend.FLASH_ATTN:
            logger.info_once("Using Flash Attention backend on V1 engine.")
            return FLASH_ATTN_V1
        elif selected_backend == _Backend.TREE_ATTN:
            logger.info_once("Using Tree Attention backend on V1 engine.")
            return TREE_ATTN_V1
        elif selected_backend == _Backend.XFORMERS_VLLM_V1:
            logger.info_once("Using XFormers backend on V1 engine.")
            return XFORMERS_V1

        from vllm.attention.selector import is_attn_backend_supported

        # Default backends for V1 engine
        # Prefer FlashInfer for Blackwell GPUs if installed
        if cls.is_device_capability(100):
            if is_default_backend_supported := is_attn_backend_supported(
                    FLASHINFER_V1, head_size, dtype):
                from vllm.v1.attention.backends.utils import (
                    set_kv_cache_layout)

                logger.info_once(
                    "Using FlashInfer backend with HND KV cache layout on "
                    "V1 engine by default for Blackwell (SM 10.0) GPUs.")
                set_kv_cache_layout("HND")

                return FLASHINFER_V1

            if not is_default_backend_supported.can_import:
                logger.warning_once(
                    "FlashInfer failed to import for V1 engine on "
                    "Blackwell (SM 10.0) GPUs; it is recommended to "
                    "install FlashInfer for better performance.")

        # FlashAttention is the default for SM 8.0+ GPUs
        if cls.has_device_capability(80):
            if has_sink and not cls.is_device_capability(90):
                logger.info_once("Using Triton backend on V1 engine.")
                return TRITON_ATTN_VLLM_V1
            if is_default_backend_supported := is_attn_backend_supported(
                    FLASH_ATTN_V1, head_size, dtype,
                    allow_import_error=False):
                logger.info_once("Using Flash Attention backend on "
                                 "V1 engine.")
                return FLASH_ATTN_V1

        # FlexAttention is the default for older GPUs
        else:
            logger.info_once("Using FlexAttention backend on V1 engine.")
            return FLEX_ATTENTION_V1

        assert not is_default_backend_supported

        use_flex_attention_reason = {}
        if not is_default_backend_supported.head_size:
            use_flex_attention_reason["head_size"] = head_size
        if not is_default_backend_supported.dtype:
            use_flex_attention_reason["dtype"] = dtype

        logger.info_once(
            "Using FlexAttention backend for %s on V1 engine.",
            ", ".join(f"{k}={v}"
                      for k, v in use_flex_attention_reason.items()),
        )
        return FLEX_ATTENTION_V1

    # Backends for V0 engine
    if selected_backend == _Backend.XFORMERS:
        logger.info("Using XFormers backend.")
        return "vllm.attention.backends.xformers.XFormersBackend"
    elif selected_backend == _Backend.DUAL_CHUNK_FLASH_ATTN:
        logger.info("Using DualChunkFlashAttention backend.")
        return ("vllm.attention.backends.dual_chunk_flash_attn."
                "DualChunkFlashAttentionBackend")
    elif selected_backend == _Backend.DIFFERENTIAL_FLASH_ATTN:
        logger.info("Using DifferentialFlashAttention backend.")
        return ("vllm.attention.backends.differential_flash_attn."
                "DifferentialFlashAttentionBackend")
    elif selected_backend == _Backend.FLASH_ATTN:
        pass
    elif selected_backend:
        raise ValueError(
            f"Invalid attention backend for {cls.device_name}, "
            f"with use_v1: {use_v1} use_mla: {use_mla}")

    target_backend = _Backend.FLASH_ATTN
    if not cls.has_device_capability(80):
        # Volta and Turing NVIDIA GPUs.
        logger.info(
            "Cannot use FlashAttention-2 backend for Volta and Turing "
            "GPUs.")
        target_backend = _Backend.XFORMERS
    elif dtype not in (torch.float16, torch.bfloat16):
        logger.info(
            "Cannot use FlashAttention-2 backend for dtype other than "
            "torch.float16 or torch.bfloat16.")
        target_backend = _Backend.XFORMERS
    elif block_size % 16 != 0:
        logger.info(
            "Cannot use FlashAttention-2 backend for block size not "
            "divisible by 16.")
        target_backend = _Backend.XFORMERS

    # FlashAttn is valid for the model, checking if the package is
    # installed.
    if target_backend == _Backend.FLASH_ATTN:
        try:
            import vllm.vllm_flash_attn  # noqa: F401
            from vllm.attention.backends.flash_attn import (  # noqa: F401
                FlashAttentionBackend, flash_attn_supports_fp8)

            supported_sizes = \
                FlashAttentionBackend.get_supported_head_sizes()
            if head_size not in supported_sizes:
                logger.info(
                    "Cannot use FlashAttention-2 backend for head size %d.",
                    head_size)
                target_backend = _Backend.XFORMERS
            fp8_kv_cache = (kv_cache_dtype is not None
                            and kv_cache_dtype.startswith("fp8"))
            if (fp8_kv_cache and not flash_attn_supports_fp8()):
                logger.info(
                    "Cannot use FlashAttention backend for FP8 KV cache.")
                target_backend = _Backend.XFORMERS
        except ImportError:
            logger.info(
                "Cannot use FlashAttention-2 backend because the "
                "vllm.vllm_flash_attn package is not found. "
                "Make sure that vllm_flash_attn was built and installed "
                "(on by default).")
            target_backend = _Backend.XFORMERS

    if target_backend == _Backend.XFORMERS:
        logger.info("Using XFormers backend.")
        return "vllm.attention.backends.xformers.XFormersBackend"

    logger.info("Using Flash Attention backend.")
    return "vllm.attention.backends.flash_attn.FlashAttentionBackend"

get_current_memory_usage classmethod

get_current_memory_usage(
    device: Optional[Device] = None,
) -> float
Source code in vllm/platforms/cuda.py
@classmethod
def get_current_memory_usage(cls,
                             device: Optional[torch.types.Device] = None
                             ) -> float:
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats(device)
    return torch.cuda.max_memory_allocated(device)

get_device_capability classmethod

get_device_capability(
    device_id: int = 0,
) -> Optional[DeviceCapability]
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_capability(cls,
                          device_id: int = 0
                          ) -> Optional[DeviceCapability]:
    raise NotImplementedError

get_device_communicator_cls classmethod

get_device_communicator_cls() -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_communicator_cls(cls) -> str:
    return "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator"  # noqa

get_device_name classmethod

get_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
    raise NotImplementedError

get_device_total_memory classmethod

get_device_total_memory(device_id: int = 0) -> int
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
    raise NotImplementedError

get_punica_wrapper classmethod

get_punica_wrapper() -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_punica_wrapper(cls) -> str:
    return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"

get_static_graph_wrapper_cls classmethod

get_static_graph_wrapper_cls() -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_static_graph_wrapper_cls(cls) -> str:
    return "vllm.compilation.cuda_graph.CUDAGraphWrapper"

get_vit_attn_backend classmethod

get_vit_attn_backend(support_fa: bool = False) -> _Backend
Source code in vllm/platforms/cuda.py
@classmethod
def get_vit_attn_backend(cls, support_fa: bool = False) -> _Backend:
    if cls.has_device_capability(80) and support_fa:
        from transformers.utils import is_flash_attn_2_available
        if is_flash_attn_2_available():
            return _Backend.FLASH_ATTN
        logger.warning_once(
            "Current `vllm-flash-attn` has a bug inside vision "
            "module, so we use xformers backend instead. You can "
            "run `pip install flash-attn` to use flash-attention "
            "backend.")
    # Fallback for Volta/Turing GPUs or FA not supported
    return _Backend.XFORMERS

is_async_output_supported classmethod

is_async_output_supported(
    enforce_eager: Optional[bool],
) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
    if enforce_eager and not envs.VLLM_USE_V1:
        logger.warning(
            "To see benefits of async output processing, enable CUDA "
            "graph. Since, enforce-eager is enabled, async output "
            "processor cannot be used")
        return False
    return True

is_fully_connected classmethod

is_fully_connected(device_ids: list[int]) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def is_fully_connected(cls, device_ids: list[int]) -> bool:
    raise NotImplementedError

is_kv_cache_dtype_supported classmethod

is_kv_cache_dtype_supported(
    kv_cache_dtype: str, model_config: ModelConfig
) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def is_kv_cache_dtype_supported(cls, kv_cache_dtype: str,
                                model_config: "ModelConfig") -> bool:
    fp8_attention = kv_cache_dtype.startswith("fp8")
    attention_backend = envs.VLLM_ATTENTION_BACKEND

    supported = False
    if model_config is not None and model_config.use_mla:
        # Default to CutlassMLA for blackwell,
        # FlashMLA otherwise
        if attention_backend is None:
            if cls.is_device_capability(100):
                attention_backend = "CUTLASS_MLA"
            else:
                attention_backend = "FLASHMLA"

        # Only FlashMLA supports fp8
        if attention_backend == "FLASHMLA":
            supported = True
        else:
            supported = (not fp8_attention)
    else:
        # Default to FlashAttention
        if attention_backend is None:
            attention_backend = "FLASH_ATTN_VLLM_V1"

        # All Blackwell backends support fp8
        if cls.is_device_capability(100):
            supported = True
        elif attention_backend == "FLASH_ATTN_VLLM_V1":
            if fp8_attention:
                from vllm.attention.utils.fa_utils import (
                    flash_attn_supports_fp8)
                supported = flash_attn_supports_fp8()
            else:
                supported = True
    return supported

log_warnings classmethod

log_warnings()
Source code in vllm/platforms/cuda.py
@classmethod
def log_warnings(cls):
    pass

set_device classmethod

set_device(device: device) -> None

Set the device for the current platform.

Source code in vllm/platforms/cuda.py
@classmethod
def set_device(cls, device: torch.device) -> None:
    """
    Set the device for the current platform.
    """
    torch.cuda.set_device(device)
    # With this trick we can force the device to be set eagerly
    # see https://github.com/pytorch/pytorch/issues/155668
    # for why and when it is needed
    _ = torch.zeros(1, device=device)

stateless_init_device_torch_dist_pg classmethod

stateless_init_device_torch_dist_pg(
    backend: str,
    prefix_store: PrefixStore,
    group_rank: int,
    group_size: int,
    timeout: timedelta,
) -> ProcessGroup
Source code in vllm/platforms/cuda.py
@classmethod
def stateless_init_device_torch_dist_pg(
    cls,
    backend: str,
    prefix_store: PrefixStore,
    group_rank: int,
    group_size: int,
    timeout: timedelta,
) -> ProcessGroup:
    assert is_nccl_available()
    pg: ProcessGroup = ProcessGroup(
        prefix_store,
        group_rank,
        group_size,
    )
    from torch.distributed.distributed_c10d import ProcessGroupNCCL

    backend_options = ProcessGroupNCCL.Options()
    backend_options._timeout = timeout

    backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
                                     backend_options)
    backend_type = ProcessGroup.BackendType.NCCL
    device = torch.device("cuda")
    pg._set_default_backend(backend_type)
    backend_class._set_sequence_number_for_group()

    pg._register_backend(device, backend_type, backend_class)
    return pg

supports_fp8 classmethod

supports_fp8() -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def supports_fp8(cls) -> bool:
    return cls.has_device_capability(89)

supports_v1 classmethod

supports_v1(model_config: ModelConfig) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def supports_v1(cls, model_config: "ModelConfig") -> bool:
    return True

use_custom_allreduce classmethod

use_custom_allreduce() -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def use_custom_allreduce(cls) -> bool:
    return True

NonNvmlCudaPlatform

Bases: CudaPlatformBase

Source code in vllm/platforms/cuda.py
class NonNvmlCudaPlatform(CudaPlatformBase):

    @classmethod
    @cache
    def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
        major, minor = torch.cuda.get_device_capability(device_id)
        return DeviceCapability(major=major, minor=minor)

    @classmethod
    def get_device_name(cls, device_id: int = 0) -> str:
        return torch.cuda.get_device_name(device_id)

    @classmethod
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        device_props = torch.cuda.get_device_properties(device_id)
        return device_props.total_memory

    @classmethod
    def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
        logger.exception(
            "NVLink detection not possible, as context support was"
            " not found. Assuming no NVLink available.")
        return False

get_device_capability cached classmethod

get_device_capability(
    device_id: int = 0,
) -> DeviceCapability
Source code in vllm/platforms/cuda.py
@classmethod
@cache
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
    major, minor = torch.cuda.get_device_capability(device_id)
    return DeviceCapability(major=major, minor=minor)

get_device_name classmethod

get_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
    return torch.cuda.get_device_name(device_id)

get_device_total_memory classmethod

get_device_total_memory(device_id: int = 0) -> int
Source code in vllm/platforms/cuda.py
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
    device_props = torch.cuda.get_device_properties(device_id)
    return device_props.total_memory

is_fully_connected classmethod

is_fully_connected(physical_device_ids: list[int]) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
    logger.exception(
        "NVLink detection not possible, as context support was"
        " not found. Assuming no NVLink available.")
    return False

NvmlCudaPlatform

Bases: CudaPlatformBase

Source code in vllm/platforms/cuda.py
class NvmlCudaPlatform(CudaPlatformBase):

    @classmethod
    @cache
    @with_nvml_context
    def get_device_capability(cls,
                              device_id: int = 0
                              ) -> Optional[DeviceCapability]:
        try:
            physical_device_id = cls.device_id_to_physical_device_id(device_id)
            handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
            major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle)
            return DeviceCapability(major=major, minor=minor)
        except RuntimeError:
            return None

    @classmethod
    @with_nvml_context
    def has_device_capability(
        cls,
        capability: Union[tuple[int, int], int],
        device_id: int = 0,
    ) -> bool:
        try:
            return super().has_device_capability(capability, device_id)
        except RuntimeError:
            return False

    @classmethod
    @with_nvml_context
    def get_device_name(cls, device_id: int = 0) -> str:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        return cls._get_physical_device_name(physical_device_id)

    @classmethod
    @with_nvml_context
    def get_device_uuid(cls, device_id: int = 0) -> str:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        return pynvml.nvmlDeviceGetUUID(handle)

    @classmethod
    @with_nvml_context
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total)

    @classmethod
    @with_nvml_context
    def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
        """
        query if the set of gpus are fully connected by nvlink (1 hop)
        """
        handles = [
            pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids
        ]
        for i, handle in enumerate(handles):
            for j, peer_handle in enumerate(handles):
                if i < j:
                    try:
                        p2p_status = pynvml.nvmlDeviceGetP2PStatus(
                            handle,
                            peer_handle,
                            pynvml.NVML_P2P_CAPS_INDEX_NVLINK,
                        )
                        if p2p_status != pynvml.NVML_P2P_STATUS_OK:
                            return False
                    except pynvml.NVMLError:
                        logger.exception(
                            "NVLink detection failed. This is normal if"
                            " your machine has no NVLink equipped.")
                        return False
        return True

    @classmethod
    def _get_physical_device_name(cls, device_id: int = 0) -> str:
        handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
        return pynvml.nvmlDeviceGetName(handle)

    @classmethod
    @with_nvml_context
    def log_warnings(cls):
        device_ids: int = pynvml.nvmlDeviceGetCount()
        if device_ids > 1:
            device_names = [
                cls._get_physical_device_name(i) for i in range(device_ids)
            ]
            if (len(set(device_names)) > 1
                    and os.environ.get("CUDA_DEVICE_ORDER") != "PCI_BUS_ID"):
                logger.warning(
                    "Detected different devices in the system: %s. Please"
                    " make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to "
                    "avoid unexpected behavior.",
                    ", ".join(device_names),
                )

_get_physical_device_name classmethod

_get_physical_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
def _get_physical_device_name(cls, device_id: int = 0) -> str:
    handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
    return pynvml.nvmlDeviceGetName(handle)

get_device_capability cached classmethod

get_device_capability(
    device_id: int = 0,
) -> Optional[DeviceCapability]
Source code in vllm/platforms/cuda.py
@classmethod
@cache
@with_nvml_context
def get_device_capability(cls,
                          device_id: int = 0
                          ) -> Optional[DeviceCapability]:
    try:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle)
        return DeviceCapability(major=major, minor=minor)
    except RuntimeError:
        return None

get_device_name classmethod

get_device_name(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def get_device_name(cls, device_id: int = 0) -> str:
    physical_device_id = cls.device_id_to_physical_device_id(device_id)
    return cls._get_physical_device_name(physical_device_id)

get_device_total_memory classmethod

get_device_total_memory(device_id: int = 0) -> int
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def get_device_total_memory(cls, device_id: int = 0) -> int:
    physical_device_id = cls.device_id_to_physical_device_id(device_id)
    handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
    return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total)

get_device_uuid classmethod

get_device_uuid(device_id: int = 0) -> str
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def get_device_uuid(cls, device_id: int = 0) -> str:
    physical_device_id = cls.device_id_to_physical_device_id(device_id)
    handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
    return pynvml.nvmlDeviceGetUUID(handle)

has_device_capability classmethod

has_device_capability(
    capability: Union[tuple[int, int], int],
    device_id: int = 0,
) -> bool
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def has_device_capability(
    cls,
    capability: Union[tuple[int, int], int],
    device_id: int = 0,
) -> bool:
    try:
        return super().has_device_capability(capability, device_id)
    except RuntimeError:
        return False

is_fully_connected classmethod

is_fully_connected(physical_device_ids: list[int]) -> bool

query if the set of gpus are fully connected by nvlink (1 hop)

Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
    """
    query if the set of gpus are fully connected by nvlink (1 hop)
    """
    handles = [
        pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids
    ]
    for i, handle in enumerate(handles):
        for j, peer_handle in enumerate(handles):
            if i < j:
                try:
                    p2p_status = pynvml.nvmlDeviceGetP2PStatus(
                        handle,
                        peer_handle,
                        pynvml.NVML_P2P_CAPS_INDEX_NVLINK,
                    )
                    if p2p_status != pynvml.NVML_P2P_STATUS_OK:
                        return False
                except pynvml.NVMLError:
                    logger.exception(
                        "NVLink detection failed. This is normal if"
                        " your machine has no NVLink equipped.")
                    return False
    return True

log_warnings classmethod

log_warnings()
Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def log_warnings(cls):
    device_ids: int = pynvml.nvmlDeviceGetCount()
    if device_ids > 1:
        device_names = [
            cls._get_physical_device_name(i) for i in range(device_ids)
        ]
        if (len(set(device_names)) > 1
                and os.environ.get("CUDA_DEVICE_ORDER") != "PCI_BUS_ID"):
            logger.warning(
                "Detected different devices in the system: %s. Please"
                " make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to "
                "avoid unexpected behavior.",
                ", ".join(device_names),
            )

with_nvml_context

with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]
Source code in vllm/platforms/cuda.py
def with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]:

    @wraps(fn)
    def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
        pynvml.nvmlInit()
        try:
            return fn(*args, **kwargs)
        finally:
            pynvml.nvmlShutdown()

    return wrapper