vllm.v1.sample.sampler
A layer that samples the next tokens from the model's outputs.
Sampler ¶
Bases: Module
A layer that samples the next tokens from the model's outputs with the following steps in order:
- If logprobs are requested:
a) Iflogprobs_mode
israw_logprobs
, compute logprobs as the final logprobs to return.
b) Iflogprobs_mode
israw_logits
, clone the logits as the final logprobs to return. - Convert logits to float32.
- Apply allowed token ids whitelist.
- Apply bad words exclusion.
- Apply logit processors which are not argmax-invariant, i.e. that can impact greedy sampling.
a) Min tokens processor
b) Logit bias processor - Apply penalties
a) Repetition penalty
b) Frequency penalty
c) Presence penalty - Sample the next tokens.
sample
method performs the following steps:
a) If notall_random
, perform greedy sampling. Ifall_greedy
, return the greedily sampled tokens and final logprobs if requested.
b) Apply temperature.
c) Apply logit processors which are argmax-invariant, by default the min_p processor.
d) Apply top_k and/or top_p.
e) Sample the next tokens with the probability distribution.
f) Ifall_random
or temperature >= epsilon (1e-5), return the randomly sampled tokens and final logprobs if requested. Else, return the greedily sampled tokens and logprobs if requested. - Gather the logprobs of the top
max_num_logprobs
and sampled token (if requested). Note that if the sampled token is within the topmax_num_logprobs
, the logprob will be eventually merged inLogprobsProcessor
during output processing. Therefore, the final output may contain eithermax_num_logprobs + 1
ormax_num_logprobs
logprobs. - Return the final
SamplerOutput
.
Source code in vllm/v1/sample/sampler.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
__init__ ¶
__init__(logprobs_mode: LogprobsMode = RAW_LOGPROBS)
apply_allowed_token_ids ¶
apply_allowed_token_ids(
logits: Tensor, sampling_metadata: SamplingMetadata
) -> Tensor
Source code in vllm/v1/sample/sampler.py
apply_bad_words ¶
apply_bad_words(
logits: Tensor, sampling_metadata: SamplingMetadata
) -> Tensor
Source code in vllm/v1/sample/sampler.py
apply_penalties ¶
apply_penalties(
logits: Tensor, sampling_metadata: SamplingMetadata
) -> Tensor
Source code in vllm/v1/sample/sampler.py
apply_temperature ¶
compute_logprobs ¶
forward ¶
forward(
logits: Tensor, sampling_metadata: SamplingMetadata
) -> SamplerOutput
Source code in vllm/v1/sample/sampler.py
gather_logprobs ¶
gather_logprobs(
logprobs: Tensor, num_logprobs: int, token_ids: Tensor
) -> LogprobsTensors
Gather logprobs for topk and sampled/prompt token.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logprobs | Tensor | (num tokens) x (vocab) tensor | required |
num_logprobs | int | minimum number of logprobs to retain per token | required |
token_ids | Tensor | prompt tokens (if prompt logprobs) or sampled tokens (if sampled logprobs); 1D token ID tensor with (num tokens) elements Must be int64. | required |
Returns:
Type | Description |
---|---|
LogprobsTensors | Top-k int indices tensor, (num tokens) x (num_logprobs + 1) |
LogprobsTensors | Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1) |
LogprobsTensors | Sampled token rank tensor, (num tokens) |
Source code in vllm/v1/sample/sampler.py
greedy_sample ¶
sample ¶
Sample logits based on sampling metadata.
The various logits processing functions called in this method may update the logits tensor in-place.