Skip to content

vllm.v1.worker.gpu_worker

A GPU worker class.

logger module-attribute

logger = init_logger(__name__)

Worker

Bases: WorkerBase

Source code in vllm/v1/worker/gpu_worker.py
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
class Worker(WorkerBase):

    def __init__(
        self,
        vllm_config: VllmConfig,
        local_rank: int,
        rank: int,
        distributed_init_method: str,
        is_driver_worker: bool = False,
    ):

        super().__init__(vllm_config=vllm_config,
                         local_rank=local_rank,
                         rank=rank,
                         distributed_init_method=distributed_init_method,
                         is_driver_worker=is_driver_worker)

        if self.model_config.trust_remote_code:
            # note: lazy import to avoid importing torch before initializing
            from vllm.utils import init_cached_hf_modules
            init_cached_hf_modules()

        # Buffers saved before sleep
        self._sleep_saved_buffers: dict[str, torch.Tensor] = {}

        # Torch profiler. Enabled and configured through env vars:
        # VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
        if envs.VLLM_TORCH_PROFILER_DIR:
            torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
            logger.info("Profiling enabled. Traces will be saved to: %s",
                        torch_profiler_trace_dir)
            logger.debug(
                "Profiler config: record_shapes=%s,"
                "profile_memory=%s,with_stack=%s,with_flops=%s",
                envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
                envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
                envs.VLLM_TORCH_PROFILER_WITH_STACK,
                envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
            )
            self.profiler = torch.profiler.profile(
                activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
                ],
                record_shapes=envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
                profile_memory=envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
                with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
                with_flops=envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
                on_trace_ready=torch.profiler.tensorboard_trace_handler(
                    torch_profiler_trace_dir, use_gzip=True))
        else:
            self.profiler = None

    def sleep(self, level: int = 1) -> None:
        from vllm.device_allocator.cumem import CuMemAllocator

        free_bytes_before_sleep = torch.cuda.mem_get_info()[0]

        # Save the buffers before level 2 sleep
        if level == 2:
            model = self.model_runner.model
            self._sleep_saved_buffers = {
                name: buffer.cpu().clone()
                for name, buffer in model.named_buffers()
            }

        allocator = CuMemAllocator.get_instance()
        allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
        free_bytes_after_sleep, total = torch.cuda.mem_get_info()
        freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
        used_bytes = total - free_bytes_after_sleep
        assert freed_bytes >= 0, "Memory usage increased after sleeping."
        logger.info(
            "Sleep mode freed %.2f GiB memory, "
            "%.2f GiB memory is still in use.", freed_bytes / GiB_bytes,
            used_bytes / GiB_bytes)

    def wake_up(self, tags: Optional[list[str]] = None) -> None:
        from vllm.device_allocator.cumem import CuMemAllocator

        allocator = CuMemAllocator.get_instance()
        allocator.wake_up(tags)

        # Restore the buffers after level 2 sleep
        if len(self._sleep_saved_buffers):
            model = self.model_runner.model
            for name, buffer in model.named_buffers():
                if name in self._sleep_saved_buffers:
                    buffer.data.copy_(self._sleep_saved_buffers[name].data)
            self._sleep_saved_buffers = {}

    def _maybe_get_memory_pool_context(self,
                                       tag: str) -> AbstractContextManager:
        if self.vllm_config.model_config.enable_sleep_mode:
            from vllm.device_allocator.cumem import CuMemAllocator

            allocator = CuMemAllocator.get_instance()
            if tag == "weights":
                assert allocator.get_current_usage() == 0, (
                    "Sleep mode can only be "
                    "used for one instance per process.")
            context = allocator.use_memory_pool(tag=tag)
        else:
            context = nullcontext()
        return context

    def initialize_cache(self, num_gpu_blocks: int,
                         num_cpu_blocks: int) -> None:
        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

    def init_device(self):
        if self.device_config.device.type == "cuda":
            # torch.distributed.all_reduce does not free the input tensor until
            # the synchronization point. This causes the memory usage to grow
            # as the number of all_reduce calls increases. This env var disables
            # this behavior.
            # Related issue:
            # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
            os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"

            # This env var set by Ray causes exceptions with graph building.
            os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
            self.device = torch.device(f"cuda:{self.local_rank}")
            current_platform.set_device(self.device)

            current_platform.check_if_supports_dtype(self.model_config.dtype)
            gc.collect()
            torch.cuda.empty_cache()

            # take current memory snapshot
            self.init_snapshot = MemorySnapshot()
            self.requested_memory = (self.init_snapshot.total_memory *
                                     self.cache_config.gpu_memory_utilization)
            if self.init_snapshot.free_memory < self.requested_memory:
                GiB = lambda b: round(b / GiB_bytes, 2)
                raise ValueError(
                    f"Free memory on device "
                    f"({GiB(self.init_snapshot.free_memory)}/"
                    f"{GiB(self.init_snapshot.total_memory)} GiB) on startup "
                    f"is less than desired GPU memory utilization "
                    f"({self.cache_config.gpu_memory_utilization}, "
                    f"{GiB(self.requested_memory)} GiB). Decrease GPU memory "
                    f"utilization or reduce GPU memory used by other processes."
                )
        else:
            raise RuntimeError(
                f"Not support device type: {self.device_config.device}")
        # Initialize the distributed environment.
        init_worker_distributed_environment(self.vllm_config, self.rank,
                                            self.distributed_init_method,
                                            self.local_rank,
                                            current_platform.dist_backend)
        # Set random seed.
        set_random_seed(self.model_config.seed)

        # Construct the model runner
        self.model_runner: GPUModelRunner = GPUModelRunner(
            self.vllm_config, self.device)

        if self.rank == 0:
            # If usage stat is enabled, collect relevant info.
            report_usage_stats(self.vllm_config)

    # FIXME(youkaichao & ywang96): Use TorchDispatchMode instead of memory pool
    # to hijack tensor allocation.
    def load_model(self) -> None:
        eep_scale_up = os.environ.get("VLLM_ELASTIC_EP_SCALE_UP_LAUNCH") == "1"
        with self._maybe_get_memory_pool_context(tag="weights"):
            self.model_runner.load_model(eep_scale_up=eep_scale_up)

    def update_config(self, overrides: dict[str, Any]) -> None:
        self.model_runner.update_config(overrides)

    def reload_weights(self) -> None:
        self.model_runner.reload_weights()

    @torch.inference_mode()
    def determine_available_memory(self) -> int:
        """Profiles the peak memory usage of the model to determine how much
        memory can be used for KV cache without OOMs.

        The engine will first conduct a profiling of the existing memory usage.
        Then, it calculate the free memory that can be used for KV cache in
        bytes.

        Tip:
            You may limit the usage of GPU memory
            by adjusting the `gpu_memory_utilization` parameter.
        """
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        GiB = lambda b: b / GiB_bytes

        # Execute a forward pass with dummy inputs to profile the memory usage
        # of the model.
        with memory_profiling(
                self.init_snapshot,
                weights_memory=int(
                    self.model_runner.model_memory_usage)) as profile_result:
            self.model_runner.profile_run()

        free_gpu_memory = profile_result.after_profile.free_memory
        # NOTE(woosuk): Here we assume that the other processes using the same
        # GPU did not change their memory usage during the profiling.
        assert self.init_snapshot.free_memory > free_gpu_memory, (
            "Error in memory profiling. "
            f"Initial free memory {GiB(self.init_snapshot.free_memory)} GiB, "
            f"current free memory {GiB(free_gpu_memory)} GiB. "
            "This happens when other processes sharing the same container "
            "release GPU memory while vLLM is profiling during initialization. "
            "To fix this, ensure consistent GPU memory allocation or "
            "isolate vLLM in its own container.")
        available_kv_cache_memory = self.requested_memory \
            - profile_result.non_kv_cache_memory

        unrequested_memory = self.init_snapshot.free_memory \
            - self.requested_memory
        logger.debug(
            "Initial free memory: %.2f GiB; "
            "Requested memory: %.2f (util), %.2f GiB",
            GiB(self.init_snapshot.free_memory),
            self.cache_config.gpu_memory_utilization,
            GiB(self.requested_memory),
        )
        logger.debug(
            "Free memory after profiling: %.2f GiB (total), "
            "%.2f GiB (within requested)",
            GiB(free_gpu_memory),
            GiB(free_gpu_memory - unrequested_memory),
        )
        logger.debug(profile_result)
        logger.info("Available KV cache memory: %.2f GiB",
                    GiB(available_kv_cache_memory))
        gc.collect()

        return int(available_kv_cache_memory)

    def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
        return self.model_runner.get_kv_cache_spec()

    def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
        """Allocate GPU KV cache with the specified kv_cache_config."""

        if self.vllm_config.model_config.enable_sleep_mode:
            from vllm.device_allocator.cumem import CuMemAllocator

            allocator = CuMemAllocator.get_instance()
            context = allocator.use_memory_pool(tag="kv_cache")
        else:
            context = nullcontext()
        with context:
            self.model_runner.initialize_kv_cache(kv_cache_config)

    def compile_or_warm_up_model(self) -> None:
        # warm up sizes that are not in cudagraph capture sizes,
        # but users still want to compile for better performance,
        # e.g. for the max-num-batched token size in chunked prefill.
        warmup_sizes = self.vllm_config.compilation_config.compile_sizes.copy()
        if not self.model_config.enforce_eager:
            warmup_sizes = [
                x for x in warmup_sizes if x not in
                self.vllm_config.compilation_config.cudagraph_capture_sizes
            ]
        # We skip EPLB here since we don't want to record dummy metrics
        for size in sorted(warmup_sizes, reverse=True):
            logger.info("Compile and warming up model for size %d", size)
            self.model_runner._dummy_run(size, skip_eplb=True)

        # Warmup and tune the kernels used during model execution before
        # cuda graph capture.
        kernel_warmup(self)

        if not self.model_config.enforce_eager:
            self.model_runner.capture_model()

        # Warm up sampler and preallocate memory buffer for logits and other
        # sampling related tensors of max possible shape to avoid memory
        # fragmentation issue.
        # NOTE: This is called after `capture_model` on purpose to prevent
        # memory buffers from being cleared by `torch.cuda.empty_cache`.
        if get_pp_group().is_last_rank:
            max_num_reqs = min(self.scheduler_config.max_num_seqs,
                               self.scheduler_config.max_num_batched_tokens)

            # We skip EPLB here since we don't want to record dummy metrics
            hidden_states, last_hidden_states = \
                self.model_runner._dummy_run(
                    num_tokens=max_num_reqs,
                    skip_eplb=True,
                )
            if self.model_runner.is_pooling_model:
                self.model_runner._dummy_pooler_run(hidden_states)
            else:
                self.model_runner._dummy_sampler_run(
                    hidden_states=last_hidden_states)

        # Reset the seed to ensure that the random state is not affected by
        # the model initialization and profiling.
        set_random_seed(self.model_config.seed)

    def get_model(self) -> nn.Module:
        return self.model_runner.get_model()

    def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
        return self.model_runner.get_supported_tasks()

    @torch.inference_mode()
    def execute_model(
        self,
        scheduler_output: "SchedulerOutput",
    ) -> Optional[ModelRunnerOutput]:
        intermediate_tensors = None
        if not get_pp_group().is_first_rank:
            intermediate_tensors = IntermediateTensors(
                get_pp_group().recv_tensor_dict(
                    all_gather_group=get_tp_group()))

        output = self.model_runner.execute_model(scheduler_output,
                                                 intermediate_tensors)

        parallel_config = self.vllm_config.parallel_config
        if parallel_config.distributed_executor_backend != "external_launcher" \
            and not get_pp_group().is_last_rank:
            assert isinstance(output, IntermediateTensors)
            get_pp_group().send_tensor_dict(output.tensors,
                                            all_gather_group=get_tp_group())

            kv_connector_output = output.kv_connector_output
            if not kv_connector_output:
                return None

            # In case of PP with kv transfer, we need to pass through the
            # kv_connector_output
            if (not kv_connector_output.finished_sending
                    and not kv_connector_output.finished_recving):
                return EMPTY_MODEL_RUNNER_OUTPUT

            output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
            output.kv_connector_output = kv_connector_output
            return output

        assert isinstance(output, ModelRunnerOutput)
        return output

    def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
        return self.model_runner.take_draft_token_ids()

    def profile(self, is_start: bool = True):
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        if is_start:
            self.profiler.start()
        else:
            self.profiler.stop()
            print(self.profiler.key_averages().table(
                sort_by="self_cuda_time_total"))

    def execute_dummy_batch(self) -> None:
        self.model_runner._dummy_run(1)

    def add_lora(self, lora_request: LoRARequest) -> bool:
        return self.model_runner.add_lora(lora_request)

    def remove_lora(self, lora_id: int) -> bool:
        return self.model_runner.remove_lora(lora_id)

    def list_loras(self) -> set[int]:
        return self.model_runner.list_loras()

    def pin_lora(self, lora_id: int) -> bool:
        return self.model_runner.pin_lora(lora_id)

    def check_health(self) -> None:
        # worker will always be healthy as long as it's running.
        return

    def _eplb_before_scale_down(self, old_ep_size: int,
                                new_ep_size: int) -> None:
        from vllm.distributed.parallel_state import get_ep_group
        if get_ep_group().rank == 0:
            logger.info("[Elastic EP] Starting expert resharding "
                        "before scaling down...")
        rank_mapping = {
            old_ep_rank: old_ep_rank if old_ep_rank < new_ep_size else -1
            for old_ep_rank in range(old_ep_size)
        }
        assert self.model_runner.eplb_state is not None
        self.model_runner.eplb_state.rearrange(self.model_runner.model,
                                               execute_shuffle=True,
                                               global_expert_load=None,
                                               rank_mapping=rank_mapping)
        torch.cuda.synchronize()
        if get_ep_group().rank == 0:
            logger.info("[Elastic EP] Expert resharding completed!")

    def _eplb_after_scale_up(
            self, old_ep_size: int, new_ep_size: int,
            global_expert_load: Optional[torch.Tensor]) -> None:
        from vllm.distributed.parallel_state import get_ep_group
        if get_ep_group().rank == 0:
            logger.info("[Elastic EP] Starting expert resharding "
                        "after scaling up...")
        rank_mapping = {
            old_ep_rank: old_ep_rank
            for old_ep_rank in range(old_ep_size)
        }
        assert self.model_runner.eplb_state is not None
        self.model_runner.eplb_state.rearrange(
            self.model_runner.model,
            execute_shuffle=True,
            global_expert_load=global_expert_load,
            rank_mapping=rank_mapping)
        if get_ep_group().rank == 0:
            logger.info("[Elastic EP] Expert resharding completed!")

    def _reconfigure_parallel_config(
            self, reconfig_request: ReconfigureDistributedRequest) -> None:
        """
        Update parallel config with provided reconfig_request
        """
        parallel_config = self.vllm_config.parallel_config
        parallel_config.data_parallel_size = \
            reconfig_request.new_data_parallel_size
        if reconfig_request.new_data_parallel_rank != \
        ReconfigureRankType.KEEP_CURRENT_RANK:
            parallel_config.data_parallel_rank = \
                reconfig_request.new_data_parallel_rank
        if reconfig_request.new_data_parallel_rank_local != \
        ReconfigureRankType.KEEP_CURRENT_RANK:
            parallel_config.data_parallel_rank_local = \
                reconfig_request.new_data_parallel_rank_local
        parallel_config.data_parallel_master_ip = \
            reconfig_request.new_data_parallel_master_ip
        parallel_config.data_parallel_master_port = \
            reconfig_request.new_data_parallel_master_port

    def _reconfigure_moe(self, old_ep_size: int,
                         new_ep_size: int) -> Optional[torch.Tensor]:
        """
        Reconfigure MoE modules with provided reconfig_request

        Return the global expert load if new_ep_size > old_ep_size,
        otherwise None
        """
        from vllm.distributed.parallel_state import (
            get_dp_group, get_ep_group, prepare_communication_buffer_for_model)
        from vllm.model_executor.layers.fused_moe.layer import (
            FusedMoEParallelConfig)

        parallel_config = self.vllm_config.parallel_config
        moe_modules = [
            module for module in self.model_runner.model.modules()
            if module.__class__.__name__ == "FusedMoE"
        ]
        num_local_experts = moe_modules[0].moe_config.num_local_experts
        assert all(module.moe_config.num_local_experts == num_local_experts
                   for module in moe_modules), (
                       "All MoE modules must have the same number of experts")
        for module in moe_modules:
            module.moe_config.num_experts = num_local_experts * new_ep_size
            module.global_num_experts = module.moe_config.num_experts
            module.moe_parallel_config = FusedMoEParallelConfig.make(
                tp_size_=get_tp_group().world_size,
                dp_size_=get_dp_group().world_size,
                vllm_parallel_config=parallel_config,
            )
            module.moe_config.moe_parallel_config = module.moe_parallel_config
        if new_ep_size < old_ep_size:
            num_local_physical_experts = num_local_experts
            assert self.model_runner.eplb_state is not None
            new_physical_experts = \
                self.model_runner.eplb_state.physical_to_logical_map.shape[1]
            parallel_config.eplb_config.num_redundant_experts = (
                new_physical_experts -
                self.model_runner.eplb_state.logical_replica_count.shape[1])
            global_expert_load = None
        else:
            num_local_physical_experts = torch.tensor([num_local_experts],
                                                      dtype=torch.int32,
                                                      device="cpu")
            torch.distributed.broadcast(num_local_physical_experts,
                                        group=get_ep_group().cpu_group,
                                        group_src=0)
            num_local_physical_experts = num_local_physical_experts.item()
            new_physical_experts = num_local_physical_experts * new_ep_size
            assert self.model_runner.eplb_state is not None
            global_expert_load = self.model_runner.eplb_state.rearrange(
                self.model_runner.model, execute_shuffle=False)
            parallel_config.eplb_config.num_redundant_experts = (
                new_physical_experts - global_expert_load.shape[1])
        prepare_communication_buffer_for_model(self.model_runner.model)
        self.model_runner.model.update_physical_experts_metadata(
            num_physical_experts=new_physical_experts,
            num_local_physical_experts=num_local_physical_experts)
        return global_expert_load

    def reinitialize_distributed(
            self, reconfig_request: ReconfigureDistributedRequest) -> None:
        from vllm.config import set_current_vllm_config
        from vllm.distributed.parallel_state import (
            cleanup_dist_env_and_memory, get_ep_group)

        old_ep_size = get_ep_group().world_size
        old_ep_rank = get_ep_group().rank
        new_ep_size = reconfig_request.new_data_parallel_size * get_tp_group(
        ).world_size * get_pp_group().world_size
        if new_ep_size < old_ep_size:
            self._eplb_before_scale_down(old_ep_size, new_ep_size)

        cleanup_dist_env_and_memory()

        if reconfig_request.new_data_parallel_rank == \
        ReconfigureRankType.SHUTDOWN_CURRENT_RANK:
            assert old_ep_rank >= new_ep_size
            # shutdown
            return

        self._reconfigure_parallel_config(reconfig_request)

        with set_current_vllm_config(self.vllm_config):
            init_worker_distributed_environment(self.vllm_config, self.rank,
                                                self.distributed_init_method,
                                                self.local_rank)

        global_expert_load = self._reconfigure_moe(old_ep_size, new_ep_size)

        if new_ep_size > old_ep_size:
            assert global_expert_load is not None
            self._eplb_after_scale_up(old_ep_size, new_ep_size,
                                      global_expert_load)

    def save_sharded_state(
        self,
        path: str,
        pattern: Optional[str] = None,
        max_size: Optional[int] = None,
    ) -> None:
        from vllm.model_executor.model_loader import ShardedStateLoader
        ShardedStateLoader.save_model(
            self.model_runner.model,
            path,
            pattern=pattern,
            max_size=max_size,
        )

    def save_tensorized_model(
        self,
        tensorizer_config: "TensorizerConfig",
    ) -> None:
        self.model_runner.save_tensorized_model(
            tensorizer_config=tensorizer_config, )

_sleep_saved_buffers instance-attribute

_sleep_saved_buffers: dict[str, Tensor] = {}

profiler instance-attribute

profiler = profile(
    activities=[CPU, CUDA],
    record_shapes=VLLM_TORCH_PROFILER_RECORD_SHAPES,
    profile_memory=VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
    with_stack=VLLM_TORCH_PROFILER_WITH_STACK,
    with_flops=VLLM_TORCH_PROFILER_WITH_FLOPS,
    on_trace_ready=tensorboard_trace_handler(
        torch_profiler_trace_dir, use_gzip=True
    ),
)

__init__

__init__(
    vllm_config: VllmConfig,
    local_rank: int,
    rank: int,
    distributed_init_method: str,
    is_driver_worker: bool = False,
)
Source code in vllm/v1/worker/gpu_worker.py
def __init__(
    self,
    vllm_config: VllmConfig,
    local_rank: int,
    rank: int,
    distributed_init_method: str,
    is_driver_worker: bool = False,
):

    super().__init__(vllm_config=vllm_config,
                     local_rank=local_rank,
                     rank=rank,
                     distributed_init_method=distributed_init_method,
                     is_driver_worker=is_driver_worker)

    if self.model_config.trust_remote_code:
        # note: lazy import to avoid importing torch before initializing
        from vllm.utils import init_cached_hf_modules
        init_cached_hf_modules()

    # Buffers saved before sleep
    self._sleep_saved_buffers: dict[str, torch.Tensor] = {}

    # Torch profiler. Enabled and configured through env vars:
    # VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
    if envs.VLLM_TORCH_PROFILER_DIR:
        torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
        logger.info("Profiling enabled. Traces will be saved to: %s",
                    torch_profiler_trace_dir)
        logger.debug(
            "Profiler config: record_shapes=%s,"
            "profile_memory=%s,with_stack=%s,with_flops=%s",
            envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
            envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
            envs.VLLM_TORCH_PROFILER_WITH_STACK,
            envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
        )
        self.profiler = torch.profiler.profile(
            activities=[
                torch.profiler.ProfilerActivity.CPU,
                torch.profiler.ProfilerActivity.CUDA,
            ],
            record_shapes=envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
            profile_memory=envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
            with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
            with_flops=envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
            on_trace_ready=torch.profiler.tensorboard_trace_handler(
                torch_profiler_trace_dir, use_gzip=True))
    else:
        self.profiler = None

_eplb_after_scale_up

_eplb_after_scale_up(
    old_ep_size: int,
    new_ep_size: int,
    global_expert_load: Optional[Tensor],
) -> None
Source code in vllm/v1/worker/gpu_worker.py
def _eplb_after_scale_up(
        self, old_ep_size: int, new_ep_size: int,
        global_expert_load: Optional[torch.Tensor]) -> None:
    from vllm.distributed.parallel_state import get_ep_group
    if get_ep_group().rank == 0:
        logger.info("[Elastic EP] Starting expert resharding "
                    "after scaling up...")
    rank_mapping = {
        old_ep_rank: old_ep_rank
        for old_ep_rank in range(old_ep_size)
    }
    assert self.model_runner.eplb_state is not None
    self.model_runner.eplb_state.rearrange(
        self.model_runner.model,
        execute_shuffle=True,
        global_expert_load=global_expert_load,
        rank_mapping=rank_mapping)
    if get_ep_group().rank == 0:
        logger.info("[Elastic EP] Expert resharding completed!")

_eplb_before_scale_down

_eplb_before_scale_down(
    old_ep_size: int, new_ep_size: int
) -> None
Source code in vllm/v1/worker/gpu_worker.py
def _eplb_before_scale_down(self, old_ep_size: int,
                            new_ep_size: int) -> None:
    from vllm.distributed.parallel_state import get_ep_group
    if get_ep_group().rank == 0:
        logger.info("[Elastic EP] Starting expert resharding "
                    "before scaling down...")
    rank_mapping = {
        old_ep_rank: old_ep_rank if old_ep_rank < new_ep_size else -1
        for old_ep_rank in range(old_ep_size)
    }
    assert self.model_runner.eplb_state is not None
    self.model_runner.eplb_state.rearrange(self.model_runner.model,
                                           execute_shuffle=True,
                                           global_expert_load=None,
                                           rank_mapping=rank_mapping)
    torch.cuda.synchronize()
    if get_ep_group().rank == 0:
        logger.info("[Elastic EP] Expert resharding completed!")

_maybe_get_memory_pool_context

_maybe_get_memory_pool_context(
    tag: str,
) -> AbstractContextManager
Source code in vllm/v1/worker/gpu_worker.py
def _maybe_get_memory_pool_context(self,
                                   tag: str) -> AbstractContextManager:
    if self.vllm_config.model_config.enable_sleep_mode:
        from vllm.device_allocator.cumem import CuMemAllocator

        allocator = CuMemAllocator.get_instance()
        if tag == "weights":
            assert allocator.get_current_usage() == 0, (
                "Sleep mode can only be "
                "used for one instance per process.")
        context = allocator.use_memory_pool(tag=tag)
    else:
        context = nullcontext()
    return context

_reconfigure_moe

_reconfigure_moe(
    old_ep_size: int, new_ep_size: int
) -> Optional[Tensor]

Reconfigure MoE modules with provided reconfig_request

Return the global expert load if new_ep_size > old_ep_size, otherwise None

Source code in vllm/v1/worker/gpu_worker.py
def _reconfigure_moe(self, old_ep_size: int,
                     new_ep_size: int) -> Optional[torch.Tensor]:
    """
    Reconfigure MoE modules with provided reconfig_request

    Return the global expert load if new_ep_size > old_ep_size,
    otherwise None
    """
    from vllm.distributed.parallel_state import (
        get_dp_group, get_ep_group, prepare_communication_buffer_for_model)
    from vllm.model_executor.layers.fused_moe.layer import (
        FusedMoEParallelConfig)

    parallel_config = self.vllm_config.parallel_config
    moe_modules = [
        module for module in self.model_runner.model.modules()
        if module.__class__.__name__ == "FusedMoE"
    ]
    num_local_experts = moe_modules[0].moe_config.num_local_experts
    assert all(module.moe_config.num_local_experts == num_local_experts
               for module in moe_modules), (
                   "All MoE modules must have the same number of experts")
    for module in moe_modules:
        module.moe_config.num_experts = num_local_experts * new_ep_size
        module.global_num_experts = module.moe_config.num_experts
        module.moe_parallel_config = FusedMoEParallelConfig.make(
            tp_size_=get_tp_group().world_size,
            dp_size_=get_dp_group().world_size,
            vllm_parallel_config=parallel_config,
        )
        module.moe_config.moe_parallel_config = module.moe_parallel_config
    if new_ep_size < old_ep_size:
        num_local_physical_experts = num_local_experts
        assert self.model_runner.eplb_state is not None
        new_physical_experts = \
            self.model_runner.eplb_state.physical_to_logical_map.shape[1]
        parallel_config.eplb_config.num_redundant_experts = (
            new_physical_experts -
            self.model_runner.eplb_state.logical_replica_count.shape[1])
        global_expert_load = None
    else:
        num_local_physical_experts = torch.tensor([num_local_experts],
                                                  dtype=torch.int32,
                                                  device="cpu")
        torch.distributed.broadcast(num_local_physical_experts,
                                    group=get_ep_group().cpu_group,
                                    group_src=0)
        num_local_physical_experts = num_local_physical_experts.item()
        new_physical_experts = num_local_physical_experts * new_ep_size
        assert self.model_runner.eplb_state is not None
        global_expert_load = self.model_runner.eplb_state.rearrange(
            self.model_runner.model, execute_shuffle=False)
        parallel_config.eplb_config.num_redundant_experts = (
            new_physical_experts - global_expert_load.shape[1])
    prepare_communication_buffer_for_model(self.model_runner.model)
    self.model_runner.model.update_physical_experts_metadata(
        num_physical_experts=new_physical_experts,
        num_local_physical_experts=num_local_physical_experts)
    return global_expert_load

_reconfigure_parallel_config

_reconfigure_parallel_config(
    reconfig_request: ReconfigureDistributedRequest,
) -> None

Update parallel config with provided reconfig_request

Source code in vllm/v1/worker/gpu_worker.py
def _reconfigure_parallel_config(
        self, reconfig_request: ReconfigureDistributedRequest) -> None:
    """
    Update parallel config with provided reconfig_request
    """
    parallel_config = self.vllm_config.parallel_config
    parallel_config.data_parallel_size = \
        reconfig_request.new_data_parallel_size
    if reconfig_request.new_data_parallel_rank != \
    ReconfigureRankType.KEEP_CURRENT_RANK:
        parallel_config.data_parallel_rank = \
            reconfig_request.new_data_parallel_rank
    if reconfig_request.new_data_parallel_rank_local != \
    ReconfigureRankType.KEEP_CURRENT_RANK:
        parallel_config.data_parallel_rank_local = \
            reconfig_request.new_data_parallel_rank_local
    parallel_config.data_parallel_master_ip = \
        reconfig_request.new_data_parallel_master_ip
    parallel_config.data_parallel_master_port = \
        reconfig_request.new_data_parallel_master_port

add_lora

add_lora(lora_request: LoRARequest) -> bool
Source code in vllm/v1/worker/gpu_worker.py
def add_lora(self, lora_request: LoRARequest) -> bool:
    return self.model_runner.add_lora(lora_request)

check_health

check_health() -> None
Source code in vllm/v1/worker/gpu_worker.py
def check_health(self) -> None:
    # worker will always be healthy as long as it's running.
    return

compile_or_warm_up_model

compile_or_warm_up_model() -> None
Source code in vllm/v1/worker/gpu_worker.py
def compile_or_warm_up_model(self) -> None:
    # warm up sizes that are not in cudagraph capture sizes,
    # but users still want to compile for better performance,
    # e.g. for the max-num-batched token size in chunked prefill.
    warmup_sizes = self.vllm_config.compilation_config.compile_sizes.copy()
    if not self.model_config.enforce_eager:
        warmup_sizes = [
            x for x in warmup_sizes if x not in
            self.vllm_config.compilation_config.cudagraph_capture_sizes
        ]
    # We skip EPLB here since we don't want to record dummy metrics
    for size in sorted(warmup_sizes, reverse=True):
        logger.info("Compile and warming up model for size %d", size)
        self.model_runner._dummy_run(size, skip_eplb=True)

    # Warmup and tune the kernels used during model execution before
    # cuda graph capture.
    kernel_warmup(self)

    if not self.model_config.enforce_eager:
        self.model_runner.capture_model()

    # Warm up sampler and preallocate memory buffer for logits and other
    # sampling related tensors of max possible shape to avoid memory
    # fragmentation issue.
    # NOTE: This is called after `capture_model` on purpose to prevent
    # memory buffers from being cleared by `torch.cuda.empty_cache`.
    if get_pp_group().is_last_rank:
        max_num_reqs = min(self.scheduler_config.max_num_seqs,
                           self.scheduler_config.max_num_batched_tokens)

        # We skip EPLB here since we don't want to record dummy metrics
        hidden_states, last_hidden_states = \
            self.model_runner._dummy_run(
                num_tokens=max_num_reqs,
                skip_eplb=True,
            )
        if self.model_runner.is_pooling_model:
            self.model_runner._dummy_pooler_run(hidden_states)
        else:
            self.model_runner._dummy_sampler_run(
                hidden_states=last_hidden_states)

    # Reset the seed to ensure that the random state is not affected by
    # the model initialization and profiling.
    set_random_seed(self.model_config.seed)

determine_available_memory

determine_available_memory() -> int

Profiles the peak memory usage of the model to determine how much memory can be used for KV cache without OOMs.

The engine will first conduct a profiling of the existing memory usage. Then, it calculate the free memory that can be used for KV cache in bytes.

Tip

You may limit the usage of GPU memory by adjusting the gpu_memory_utilization parameter.

Source code in vllm/v1/worker/gpu_worker.py
@torch.inference_mode()
def determine_available_memory(self) -> int:
    """Profiles the peak memory usage of the model to determine how much
    memory can be used for KV cache without OOMs.

    The engine will first conduct a profiling of the existing memory usage.
    Then, it calculate the free memory that can be used for KV cache in
    bytes.

    Tip:
        You may limit the usage of GPU memory
        by adjusting the `gpu_memory_utilization` parameter.
    """
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    GiB = lambda b: b / GiB_bytes

    # Execute a forward pass with dummy inputs to profile the memory usage
    # of the model.
    with memory_profiling(
            self.init_snapshot,
            weights_memory=int(
                self.model_runner.model_memory_usage)) as profile_result:
        self.model_runner.profile_run()

    free_gpu_memory = profile_result.after_profile.free_memory
    # NOTE(woosuk): Here we assume that the other processes using the same
    # GPU did not change their memory usage during the profiling.
    assert self.init_snapshot.free_memory > free_gpu_memory, (
        "Error in memory profiling. "
        f"Initial free memory {GiB(self.init_snapshot.free_memory)} GiB, "
        f"current free memory {GiB(free_gpu_memory)} GiB. "
        "This happens when other processes sharing the same container "
        "release GPU memory while vLLM is profiling during initialization. "
        "To fix this, ensure consistent GPU memory allocation or "
        "isolate vLLM in its own container.")
    available_kv_cache_memory = self.requested_memory \
        - profile_result.non_kv_cache_memory

    unrequested_memory = self.init_snapshot.free_memory \
        - self.requested_memory
    logger.debug(
        "Initial free memory: %.2f GiB; "
        "Requested memory: %.2f (util), %.2f GiB",
        GiB(self.init_snapshot.free_memory),
        self.cache_config.gpu_memory_utilization,
        GiB(self.requested_memory),
    )
    logger.debug(
        "Free memory after profiling: %.2f GiB (total), "
        "%.2f GiB (within requested)",
        GiB(free_gpu_memory),
        GiB(free_gpu_memory - unrequested_memory),
    )
    logger.debug(profile_result)
    logger.info("Available KV cache memory: %.2f GiB",
                GiB(available_kv_cache_memory))
    gc.collect()

    return int(available_kv_cache_memory)

execute_dummy_batch

execute_dummy_batch() -> None
Source code in vllm/v1/worker/gpu_worker.py
def execute_dummy_batch(self) -> None:
    self.model_runner._dummy_run(1)

execute_model

execute_model(
    scheduler_output: SchedulerOutput,
) -> Optional[ModelRunnerOutput]
Source code in vllm/v1/worker/gpu_worker.py
@torch.inference_mode()
def execute_model(
    self,
    scheduler_output: "SchedulerOutput",
) -> Optional[ModelRunnerOutput]:
    intermediate_tensors = None
    if not get_pp_group().is_first_rank:
        intermediate_tensors = IntermediateTensors(
            get_pp_group().recv_tensor_dict(
                all_gather_group=get_tp_group()))

    output = self.model_runner.execute_model(scheduler_output,
                                             intermediate_tensors)

    parallel_config = self.vllm_config.parallel_config
    if parallel_config.distributed_executor_backend != "external_launcher" \
        and not get_pp_group().is_last_rank:
        assert isinstance(output, IntermediateTensors)
        get_pp_group().send_tensor_dict(output.tensors,
                                        all_gather_group=get_tp_group())

        kv_connector_output = output.kv_connector_output
        if not kv_connector_output:
            return None

        # In case of PP with kv transfer, we need to pass through the
        # kv_connector_output
        if (not kv_connector_output.finished_sending
                and not kv_connector_output.finished_recving):
            return EMPTY_MODEL_RUNNER_OUTPUT

        output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
        output.kv_connector_output = kv_connector_output
        return output

    assert isinstance(output, ModelRunnerOutput)
    return output

get_kv_cache_spec

get_kv_cache_spec() -> dict[str, KVCacheSpec]
Source code in vllm/v1/worker/gpu_worker.py
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
    return self.model_runner.get_kv_cache_spec()

get_model

get_model() -> Module
Source code in vllm/v1/worker/gpu_worker.py
def get_model(self) -> nn.Module:
    return self.model_runner.get_model()

get_supported_tasks

get_supported_tasks() -> tuple[SupportedTask, ...]
Source code in vllm/v1/worker/gpu_worker.py
def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
    return self.model_runner.get_supported_tasks()

init_device

init_device()
Source code in vllm/v1/worker/gpu_worker.py
def init_device(self):
    if self.device_config.device.type == "cuda":
        # torch.distributed.all_reduce does not free the input tensor until
        # the synchronization point. This causes the memory usage to grow
        # as the number of all_reduce calls increases. This env var disables
        # this behavior.
        # Related issue:
        # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
        os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"

        # This env var set by Ray causes exceptions with graph building.
        os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
        self.device = torch.device(f"cuda:{self.local_rank}")
        current_platform.set_device(self.device)

        current_platform.check_if_supports_dtype(self.model_config.dtype)
        gc.collect()
        torch.cuda.empty_cache()

        # take current memory snapshot
        self.init_snapshot = MemorySnapshot()
        self.requested_memory = (self.init_snapshot.total_memory *
                                 self.cache_config.gpu_memory_utilization)
        if self.init_snapshot.free_memory < self.requested_memory:
            GiB = lambda b: round(b / GiB_bytes, 2)
            raise ValueError(
                f"Free memory on device "
                f"({GiB(self.init_snapshot.free_memory)}/"
                f"{GiB(self.init_snapshot.total_memory)} GiB) on startup "
                f"is less than desired GPU memory utilization "
                f"({self.cache_config.gpu_memory_utilization}, "
                f"{GiB(self.requested_memory)} GiB). Decrease GPU memory "
                f"utilization or reduce GPU memory used by other processes."
            )
    else:
        raise RuntimeError(
            f"Not support device type: {self.device_config.device}")
    # Initialize the distributed environment.
    init_worker_distributed_environment(self.vllm_config, self.rank,
                                        self.distributed_init_method,
                                        self.local_rank,
                                        current_platform.dist_backend)
    # Set random seed.
    set_random_seed(self.model_config.seed)

    # Construct the model runner
    self.model_runner: GPUModelRunner = GPUModelRunner(
        self.vllm_config, self.device)

    if self.rank == 0:
        # If usage stat is enabled, collect relevant info.
        report_usage_stats(self.vllm_config)

initialize_cache

initialize_cache(
    num_gpu_blocks: int, num_cpu_blocks: int
) -> None
Source code in vllm/v1/worker/gpu_worker.py
def initialize_cache(self, num_gpu_blocks: int,
                     num_cpu_blocks: int) -> None:
    self.cache_config.num_gpu_blocks = num_gpu_blocks
    self.cache_config.num_cpu_blocks = num_cpu_blocks

initialize_from_config

initialize_from_config(
    kv_cache_config: KVCacheConfig,
) -> None

Allocate GPU KV cache with the specified kv_cache_config.

Source code in vllm/v1/worker/gpu_worker.py
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
    """Allocate GPU KV cache with the specified kv_cache_config."""

    if self.vllm_config.model_config.enable_sleep_mode:
        from vllm.device_allocator.cumem import CuMemAllocator

        allocator = CuMemAllocator.get_instance()
        context = allocator.use_memory_pool(tag="kv_cache")
    else:
        context = nullcontext()
    with context:
        self.model_runner.initialize_kv_cache(kv_cache_config)

list_loras

list_loras() -> set[int]
Source code in vllm/v1/worker/gpu_worker.py
def list_loras(self) -> set[int]:
    return self.model_runner.list_loras()

load_model

load_model() -> None
Source code in vllm/v1/worker/gpu_worker.py
def load_model(self) -> None:
    eep_scale_up = os.environ.get("VLLM_ELASTIC_EP_SCALE_UP_LAUNCH") == "1"
    with self._maybe_get_memory_pool_context(tag="weights"):
        self.model_runner.load_model(eep_scale_up=eep_scale_up)

pin_lora

pin_lora(lora_id: int) -> bool
Source code in vllm/v1/worker/gpu_worker.py
def pin_lora(self, lora_id: int) -> bool:
    return self.model_runner.pin_lora(lora_id)

profile

profile(is_start: bool = True)
Source code in vllm/v1/worker/gpu_worker.py
def profile(self, is_start: bool = True):
    if self.profiler is None:
        raise RuntimeError("Profiler is not enabled.")
    if is_start:
        self.profiler.start()
    else:
        self.profiler.stop()
        print(self.profiler.key_averages().table(
            sort_by="self_cuda_time_total"))

reinitialize_distributed

reinitialize_distributed(
    reconfig_request: ReconfigureDistributedRequest,
) -> None
Source code in vllm/v1/worker/gpu_worker.py
def reinitialize_distributed(
        self, reconfig_request: ReconfigureDistributedRequest) -> None:
    from vllm.config import set_current_vllm_config
    from vllm.distributed.parallel_state import (
        cleanup_dist_env_and_memory, get_ep_group)

    old_ep_size = get_ep_group().world_size
    old_ep_rank = get_ep_group().rank
    new_ep_size = reconfig_request.new_data_parallel_size * get_tp_group(
    ).world_size * get_pp_group().world_size
    if new_ep_size < old_ep_size:
        self._eplb_before_scale_down(old_ep_size, new_ep_size)

    cleanup_dist_env_and_memory()

    if reconfig_request.new_data_parallel_rank == \
    ReconfigureRankType.SHUTDOWN_CURRENT_RANK:
        assert old_ep_rank >= new_ep_size
        # shutdown
        return

    self._reconfigure_parallel_config(reconfig_request)

    with set_current_vllm_config(self.vllm_config):
        init_worker_distributed_environment(self.vllm_config, self.rank,
                                            self.distributed_init_method,
                                            self.local_rank)

    global_expert_load = self._reconfigure_moe(old_ep_size, new_ep_size)

    if new_ep_size > old_ep_size:
        assert global_expert_load is not None
        self._eplb_after_scale_up(old_ep_size, new_ep_size,
                                  global_expert_load)

reload_weights

reload_weights() -> None
Source code in vllm/v1/worker/gpu_worker.py
def reload_weights(self) -> None:
    self.model_runner.reload_weights()

remove_lora

remove_lora(lora_id: int) -> bool
Source code in vllm/v1/worker/gpu_worker.py
def remove_lora(self, lora_id: int) -> bool:
    return self.model_runner.remove_lora(lora_id)

save_sharded_state

save_sharded_state(
    path: str,
    pattern: Optional[str] = None,
    max_size: Optional[int] = None,
) -> None
Source code in vllm/v1/worker/gpu_worker.py
def save_sharded_state(
    self,
    path: str,
    pattern: Optional[str] = None,
    max_size: Optional[int] = None,
) -> None:
    from vllm.model_executor.model_loader import ShardedStateLoader
    ShardedStateLoader.save_model(
        self.model_runner.model,
        path,
        pattern=pattern,
        max_size=max_size,
    )

save_tensorized_model

save_tensorized_model(
    tensorizer_config: TensorizerConfig,
) -> None
Source code in vllm/v1/worker/gpu_worker.py
def save_tensorized_model(
    self,
    tensorizer_config: "TensorizerConfig",
) -> None:
    self.model_runner.save_tensorized_model(
        tensorizer_config=tensorizer_config, )

sleep

sleep(level: int = 1) -> None
Source code in vllm/v1/worker/gpu_worker.py
def sleep(self, level: int = 1) -> None:
    from vllm.device_allocator.cumem import CuMemAllocator

    free_bytes_before_sleep = torch.cuda.mem_get_info()[0]

    # Save the buffers before level 2 sleep
    if level == 2:
        model = self.model_runner.model
        self._sleep_saved_buffers = {
            name: buffer.cpu().clone()
            for name, buffer in model.named_buffers()
        }

    allocator = CuMemAllocator.get_instance()
    allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
    free_bytes_after_sleep, total = torch.cuda.mem_get_info()
    freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
    used_bytes = total - free_bytes_after_sleep
    assert freed_bytes >= 0, "Memory usage increased after sleeping."
    logger.info(
        "Sleep mode freed %.2f GiB memory, "
        "%.2f GiB memory is still in use.", freed_bytes / GiB_bytes,
        used_bytes / GiB_bytes)

take_draft_token_ids

take_draft_token_ids() -> Optional[DraftTokenIds]
Source code in vllm/v1/worker/gpu_worker.py
def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
    return self.model_runner.take_draft_token_ids()

update_config

update_config(overrides: dict[str, Any]) -> None
Source code in vllm/v1/worker/gpu_worker.py
def update_config(self, overrides: dict[str, Any]) -> None:
    self.model_runner.update_config(overrides)

wake_up

wake_up(tags: Optional[list[str]] = None) -> None
Source code in vllm/v1/worker/gpu_worker.py
def wake_up(self, tags: Optional[list[str]] = None) -> None:
    from vllm.device_allocator.cumem import CuMemAllocator

    allocator = CuMemAllocator.get_instance()
    allocator.wake_up(tags)

    # Restore the buffers after level 2 sleep
    if len(self._sleep_saved_buffers):
        model = self.model_runner.model
        for name, buffer in model.named_buffers():
            if name in self._sleep_saved_buffers:
                buffer.data.copy_(self._sleep_saved_buffers[name].data)
        self._sleep_saved_buffers = {}

init_worker_distributed_environment

init_worker_distributed_environment(
    vllm_config: VllmConfig,
    rank: int,
    distributed_init_method: Optional[str] = None,
    local_rank: int = -1,
    backend: str = "nccl",
) -> None

Initialize the distributed environment.

Source code in vllm/v1/worker/gpu_worker.py
def init_worker_distributed_environment(
    vllm_config: VllmConfig,
    rank: int,
    distributed_init_method: Optional[str] = None,
    local_rank: int = -1,
    backend: str = "nccl",
) -> None:
    """Initialize the distributed environment."""
    parallel_config = vllm_config.parallel_config
    set_custom_all_reduce(not parallel_config.disable_custom_all_reduce)

    init_distributed_environment(parallel_config.world_size, rank,
                                 distributed_init_method, local_rank, backend)

    ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
                                      parallel_config.pipeline_parallel_size)

    ensure_kv_transfer_initialized(vllm_config)