Async LLM Streaming¶
Source examples/offline_inference/async_llm_streaming.py.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Simple example demonstrating streaming offline inference with AsyncLLM (V1 engine).
This script shows the core functionality of vLLM's AsyncLLM engine for streaming
token-by-token output in offline inference scenarios. It demonstrates DELTA mode
streaming where you receive new tokens as they are generated.
Usage:
python examples/offline_inference/async_llm_streaming.py
"""
import asyncio
from vllm import SamplingParams
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.sampling_params import RequestOutputKind
from vllm.v1.engine.async_llm import AsyncLLM
async def stream_response(engine: AsyncLLM, prompt: str, request_id: str) -> None:
"""
Stream response from AsyncLLM and display tokens as they arrive.
This function demonstrates the core streaming pattern:
1. Create SamplingParams with DELTA output kind
2. Call engine.generate() and iterate over the async generator
3. Print new tokens as they arrive
4. Handle the finished flag to know when generation is complete
"""
print(f"\n🚀 Prompt: {prompt!r}")
print("💬 Response: ", end="", flush=True)
# Configure sampling parameters for streaming
sampling_params = SamplingParams(
max_tokens=100,
temperature=0.8,
top_p=0.95,
seed=42, # For reproducible results
output_kind=RequestOutputKind.DELTA, # Get only new tokens each iteration
)
try:
# Stream tokens from AsyncLLM
async for output in engine.generate(
request_id=request_id, prompt=prompt, sampling_params=sampling_params
):
# Process each completion in the output
for completion in output.outputs:
# In DELTA mode, we get only new tokens generated since last iteration
new_text = completion.text
if new_text:
print(new_text, end="", flush=True)
# Check if generation is finished
if output.finished:
print("\n✅ Generation complete!")
break
except Exception as e:
print(f"\n❌ Error during streaming: {e}")
raise
async def main():
print("🔧 Initializing AsyncLLM...")
# Create AsyncLLM engine with simple configuration
engine_args = AsyncEngineArgs(
model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True, # Faster startup for examples
)
engine = AsyncLLM.from_engine_args(engine_args)
try:
# Example prompts to demonstrate streaming
prompts = [
"The future of artificial intelligence is",
"In a galaxy far, far away",
"The key to happiness is",
]
print(f"🎯 Running {len(prompts)} streaming examples...")
# Process each prompt
for i, prompt in enumerate(prompts, 1):
print(f"\n{'=' * 60}")
print(f"Example {i}/{len(prompts)}")
print(f"{'=' * 60}")
request_id = f"stream-example-{i}"
await stream_response(engine, prompt, request_id)
# Brief pause between examples
if i < len(prompts):
await asyncio.sleep(0.5)
print("\n🎉 All streaming examples completed!")
finally:
# Always clean up the engine
print("🔧 Shutting down engine...")
engine.shutdown()
if __name__ == "__main__":
try:
asyncio.run(main())
except KeyboardInterrupt:
print("\n🛑 Interrupted by user")