Skip to content

Offline Inference

Offline inference is possible in your own code using vLLM's LLM class.

For example, the following code downloads the facebook/opt-125m model from HuggingFace and runs it in vLLM using the default configuration.

from vllm import LLM

# Initialize the vLLM engine.
llm = LLM(model="facebook/opt-125m")

After initializing the LLM instance, use the available APIs to perform model inference. The available APIs depend on the model type:

Ray Data LLM API

Ray Data LLM is an alternative offline inference API that uses vLLM as the underlying engine. This API adds several batteries-included capabilities that simplify large-scale, GPU-efficient inference:

  • Streaming execution processes datasets that exceed aggregate cluster memory.
  • Automatic sharding, load balancing, and autoscaling distribute work across a Ray cluster with built-in fault tolerance.
  • Continuous batching keeps vLLM replicas saturated and maximizes GPU utilization.
  • Transparent support for tensor and pipeline parallelism enables efficient multi-GPU inference.
  • Reading and writing to most popular file formats and cloud object storage.
  • Scaling up the workload without code changes.
Code
import ray  # Requires ray>=2.44.1
from ray.data.llm import vLLMEngineProcessorConfig, build_llm_processor

config = vLLMEngineProcessorConfig(model_source="unsloth/Llama-3.2-1B-Instruct")
processor = build_llm_processor(
    config,
    preprocess=lambda row: {
        "messages": [
            {"role": "system", "content": "You are a bot that completes unfinished haikus."},
            {"role": "user", "content": row["item"]},
        ],
        "sampling_params": {"temperature": 0.3, "max_tokens": 250},
    },
    postprocess=lambda row: {"answer": row["generated_text"]},
)

ds = ray.data.from_items(["An old silent pond..."])
ds = processor(ds)
ds.write_parquet("local:///tmp/data/")

For more information about the Ray Data LLM API, see the Ray Data LLM documentation.